Download Free Geotechnique 2e Ed Book in PDF and EPUB Free Download. You can read online Geotechnique 2e Ed and write the review.

Established as a standard textbook for students of geotechnical engineering, this second edition of Geotechnical Engineering provides a solid grounding in the mechanics of soils and soil-structure interaction. Renato Lancellotta gives a clear presentation of the fundamental principles of soil mechanics and demonstrates how these principles are applied in practice to engineering problems and geotechnical design. This is supported by numerous examples with worked solutions, clear summaries and extensive further reading lists throughout the book. Thorough coverage is given to all classic soil mechanics topics such as boundary value problems and serviceability of structures and to topics which are often missed out of other books or covered more briefly including the principles of continuum mechanics, Critical State Theory and innovative techniques such as seismic methods. It is suitable for soil mechanics modules on undergraduate civil engineering courses and for use as a core text for specialist graduate geotechnical engineering students. It explores not only the basics but also several advanced aspects of soil behaviour, and outlines principles which underpin more advanced professional work therefore providing a useful reference work for practising engineers. Readers gain a good grasp of applied mechanics, testing and experimentation, and methods for observing real structures.
This practical handbook of properties for soils and rock contains in a concise tabular format the key issues relevant to geotechnical investigations, assessments and designs in common practice. There are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference do
A fully up-to-date, practical guide to foundation engineering Revised to cover the 2009 International Building Code, Foundation Engineering Handbook, Second Edition presents basic geotechnical field and laboratory studies, such as subsurface exploration and laboratory testing of soil, rock, and groundwater samples. The book then discusses the geotechnical aspects of foundation engineering, including conditions commonly encountered by design engineers--settlement, expansive soil, and slope stability. Details on the performance or engineering evaluation of foundation construction and the application of the 2009 International Building Code are included in this valuable resource. FOUNDATION ENGINEERING HANDBOOK, SECOND EDITION COVERS: Subsurface exploration Laboratory testing Soil mechanics Shallow and deep foundations Bearing capacity and settlement of foundations Foundations on expansive soil Slope stability Retaining walls Foundation deterioration and cracking Geotechnical earthquake engineering for soils, foundations, and retaining walls Grading and other soil improvement methods Foundation excavation, underpinning, and field load tests Geosynthetics and instrumentation 2009 International Building Code regulations for soils and foundations
This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.
Analysis and design of geotechnical structures combines, in a single endeavor, a textbook to assist students in understanding the behavior of the main geotechnical works and a guide for practising geotechnical engineers, designers, and consultants. The subjects are treated in line with limit state design, which underpins the Eurocodes and most North America design codes. Instructors and students will value innovative approaches to numerous issues refined by the experience of the author in teaching generations of enthusiastic students. Professionals will gain from its comprehensive treatment of the topics covered in each chapter, supplemented by a plethora of informative material used by consultants and designers. For the benefit of both academics and professionals, conceptual exercises and practical geotechnical design problems are proposed at the end of most chapters. A final annex includes detailed resolutions of the exercises and problems.
Geotechnical Engineering: Principles and Practices, 2/e, is ideal or junior-level soil mechanics or introductory geotechnical engineering courses. This introductory geotechnical engineering textbook explores both the principles of soil mechanics and their application to engineering practice. It offers a rigorous, yet accessible and easy-to-read approach, as well as technical depth and an emphasis on understanding the physical basis for soil behavior. The second edition has been revised to include updated content and many new problems and exercises, as well as to reflect feedback from reviewers and the authors' own experiences.
Geotechnical Engineering of Dams, 2nd edition provides a comprehensive text on the geotechnical and geological aspects of the investigations for and the design and construction of new dams and the review and assessment of existing dams. The main emphasis of this work is on embankment dams, but much of the text, particularly those parts related to geology, can be used for concrete gravity and arch dams. All phases of investigation, design and construction are covered. Detailed descriptions are given from the initial site assessment and site investigation program through to the preliminary and detailed design phases and, ultimately, the construction phase. The assessment of existing dams, including the analysis of risks posed by those dams, is also discussed. This wholly revised and significantly expanded 2nd edition includes a lengthy new appendix on the assessment of the likelihood of failure of dams by internal erosion and piping. This valuable source on dam engineering incorporates the 200+ years of collective experience of the authors in the subject area. Design methods are presented in combination with their theoretical basis, to enable the reader to develop a proper understanding of the possibilities and limitations of a method. For its practical, well-founded approach, this work can serve as a useful guide for professional dam engineers and engineering geologists and as a textbook for university students.