Download Free Geospatial Algebraic Computations Book in PDF and EPUB Free Download. You can read online Geospatial Algebraic Computations and write the review.

Improved geospatial instrumentation and technology such as in laser scanning has now resulted in millions of data being collected, e.g., point clouds. It is in realization that such huge amount of data requires efficient and robust mathematical solutions that this third edition of the book extends the second edition by introducing three new chapters: Robust parameter estimation, Multiobjective optimization and Symbolic regression. Furthermore, the linear homotopy chapter is expanded to include nonlinear homotopy. These disciplines are discussed first in the theoretical part of the book before illustrating their geospatial applications in the applications chapters where numerous numerical examples are presented. The renewed electronic supplement contains these new theoretical and practical topics, with the corresponding Mathematica statements and functions supporting their computations introduced and applied. This third edition is renamed in light of these technological advancements.
This book showcases powerful new hybrid methods that combine numerical and symbolic algorithms. Hybrid algorithm research is currently one of the most promising directions in the context of geosciences mathematics and computer mathematics in general. One important topic addressed here with a broad range of applications is the solution of multivariate polynomial systems by means of resultants and Groebner bases. But that’s barely the beginning, as the authors proceed to discuss genetic algorithms, integer programming, symbolic regression, parallel computing, and many other topics. The book is strictly goal-oriented, focusing on the solution of fundamental problems in the geosciences, such as positioning and point cloud problems. As such, at no point does it discuss purely theoretical mathematics. "The book delivers hybrid symbolic-numeric solutions, which are a large and growing area at the boundary of mathematics and computer science." Dr. Daniel Li chtbau
"Indeed, the most important part of engineering work—and also of other scientific work—is the determination of the method of attacking the problem, whatever it may be, whether an experimental investigation, or a theoretical calculation. ... It is by the choice of a suitable method of attack, that intricate problems are reduced to simple phenomena, and then easily solved." Charles Proteus Steinmetz. The structure of this book is to provide a sequence of theory, workshops and practical field sessions that mimic a simple survey project, designed for civil and mining engineers. The format of the book is based on a number of years of experience gained in presenting the course at undergraduate and post graduate levels. The course is designed to guide engineers through survey tasks that the engineering industry feels is necessary for them to have a demonstrated competency in surveying techniques, data gathering and reduction, and report presentation. The course i s not designed to make engineers become surveyors. It is designed to allow an appreciation of the civil and mine engineering surveyor’s job. There are many excellent text books available on the subject of engineering surveying, but they address the surveyor, not the engineer. Hopefully this book will distil many parts of the standard text book. A lot of the material presented is scattered through very disparate sources and has been gathered into this book to show what techniques lie behind a surveyor’s repertoire of observational and computational skills, and provide an understanding of the decisions made in terms of the presentation of results. The course has been designed to run over about 6 weeks of a semester, providing a half unit load which complements a computer aided design (CAD) based design project.
This book highlights the latest research in computational intelligence and its applications. It covers both conventional and trending approaches in individual chapters on Fuzzy Systems, Intelligence in Robotics, Deep Learning Approaches, Optimization and Classification, Detection, Inference and Prediction, Hybrid Methods, Emerging Intelligence, Intelligent Health Care, and Engineering Data- and Model-Driven Applications. All chapters are based on peer-reviewed contributions presented at the 19th Annual UK Workshop on Computational Intelligence, held in Portsmouth, UK, on 4–6 September 2019. The book offers a valuable reference guide for readers with expertise in computational intelligence or who are seeking a comprehensive and timely review of the latest trends in computational intelligence. Special emphasis is placed on novel methods and their use in a wide range of application areas, updating both academics and professionals on the state of the art.
This book is the second edition of Environmental Monitoring using GNSS and highlights the latest developments in global navigation satellite systems (GNSS). It features a completely new title and additional chapters that present emerging challenges to environmental monitoring—“climate variability/change and food insecurity.” Since the publication of the first edition, much has changed in both the development and applications of GNSS, a satellite microwave remote sensing technique. It is the first tool to span all four dimensions of relevance to humans (position, navigation, timing and the environment), and it has widely been used for positioning (both by military and civilians), navigation and timing. Its increasing use is leading to a new era of remote sensing that is now revolutionizing the art of monitoring our environment in ways never imagined before. On the one hand, nearly all GNSS satellites (Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Galileo and Beidou) have become operational, thereby providing high-precision, continuous, all-weather and near real- time remote sensing multi-signals beneficial to environmental monitoring. On the other hand, the emerging challenges of precisely monitoring climate change and the demand for the production of sufficient food for ever-increasing populations are pushing traditional monitoring methods to their limits. In this regard, refracted GNSS signals (i.e., occulted GNSS signals or GNSS meteorology) are now emerging as sensors of climate variability, while the reflected signals (GNSS reflectometry or GNSS-R) are increasingly finding applications in determining, e.g., soil moisture content, ice and snow thickness, ocean heights, and wind speed and direction, among others. Furthermore, the increasing recognition and application of GNSS-supported unmanned aircraft vehicles (UAV)/drones in agriculture (e.g., through the determination of water holding capacity of soil) highlights the new challenges facing GNSS. As such, this new edition three new chapters address GNSS reflectometry and applications; GNSS sensing of climate variability; and the applications in UAV/drones. Moreover, it explores the application of GNSS to support integrated coastal zone management.
The Conference on Spatial Information Theory – COSIT – grew out of a series of workshops / NATO Advanced Study Institutes / NSF specialist meetings concerned with cognitive and applied aspects of representing large-scale space, particularly geographic space. In these meetings, the need for a well-founded theory of spatial information processing was identified. The COSIT conference series was established in 1993 as a biennial interdisciplinary European conference on the representation and processing of information about large-scale space, after a successful international conference on the topic had been organized by Andrew Frank et al. in Pisa, Italy, in 1992 (frequently referred to as ‘COSIT zero’). After two successful European conferences with strong North-American participation (COSIT ’93, held on the Island of Elba, Italy; COSIT ’95, held in Semmering, Austria), the conference became a truly international enterprise when COSIT ’97 was held in the Laurel Highlands, Pennsylvania, USA. COSIT ’99 will take place in Stade, Germany. All aspects of large-scale space, i. e. spaces too large to be seen from a single vantage point, are addressed in the COSIT conferences. These include spaces of geographic scale, as well as smaller spaces in which humans, animals, or autonomous robots have to find their way around. Spatial information theory also deals with the description of objects, processes, or events in spatial environments and it forms the foundation for the construction of Geographic Information Systems (GIS) and for spatial information and communication system design in general.
State-of-the-art GIS spatial data management and analysis tools are revolutionizing the field of water resource engineering. Familiarity with these technologies is now a prerequisite for success in engineers' and planners' efforts to create a reliable infrastructure.GIS in Water Resource Engineering presents a review of the concepts and application
This book gives a comprehensive view of the developed procrustes models, including the isotropic, the generalized and the anisotropic variants. These represent original tools to perform, among others, the bundle block adjustment and the global registration of multiple 3D LiDAR point clouds. Moreover, the book also reports the recently derived total least squares solution of the anisotropic Procrustes model, together with its practical application in solving the exterior orientation of one image. The book is aimed at all those interested in discovering valuable innovative algorithms for solving various photogrammetric computer vision problems. In this context, where functional models are non-linear, Procrustean methods prove to be powerful since they do not require any linearization nor approximated values of the unknown parameters, furnishing at the same time results comparable in terms of accuracy with those given by the state-of-the-art methods.
This book is for students and professionals involved in Geospatial Computations and related areas such as Geomatics, Surveying Engineering, Geoinformatics, Geospatial Information Science and Technology (GIS&T), Geography, Geology, Agriculture, and Geointelligence. More emphasis is given to using scientific methods and tools materialized in algorithms and software to produce practical results. Specifically, algorithms such as error analysis of measurements and the least squares adjustment method to obtain ground coordinates of points with their reliability to construct the geometric framework of the geographical space necessary for various geospatial applications such as a Geographic Information System (GIS) are discussed. Other algorithms involve interpolation methods for DEM and spatial data analysis. Furthermore, such algorithms in the geospatial area are basic surveying methods using a total station, photogrammetry, digital terrain modeling, GNSS, augmented reality, coordinate transformations, map projections, and interpolation. Most algorithms are implemented into 27 educational computer programs and necessary data to understand GIS&T operations from the inside with a didactics approach targeting to become more intelligent than machines. The educational programs include general photogrammetric operations with aerial photography and drones, 3-D surveying network adjustment, GNSS navigation solutions, and many others. This approach helps to obtain high-quality scientific and technological bases, which in turn enhance the ability to exploit and use most tools and functions of existing GIS&T systems and, therefore, to be highly competitive as a professional in the market. This book has ten chapters such as Measurements and Errors Estimation and Accuracy Standards, Specialized Numerical Methods, Error Propagation & Least Squares Adjustment, Condition Method and Generalized Least Squares, Applications to Map Projections and Transformation of Coordinates, Applications to Surveying Networks, Applications of Computational Methods in Photogrammetry, Digital Elevation Models (DEM), Computer Programming – Scripting & AI.
While preparing and teaching ‘Introduction to Geodesy I and II’ to undergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taught required some skills in algebra, and in particular, computer algebra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we have attempted to put together basic concepts of abstract algebra which underpin the techniques for solving algebraic problems. Algebraic computational algorithms useful for solving problems which require exact solutions to nonlinear systems of equations are presented and tested on various problems. Though the present book focuses mainly on the two ?elds, the concepts and techniques presented herein are nonetheless applicable to other ?elds where algebraic computational problems might be encountered. In Engineering for example, network densi?cation and robotics apply resection and intersection techniques which require algebraic solutions. Solution of nonlinear systems of equations is an indispensable task in almost all geosciences such as geodesy, geoinformatics, geophysics (just to mention but a few) as well as robotics. These equations which require exact solutions underpin the operations of ranging, resection, intersection and other techniques that are normally used. Examples of problems that require exact solutions include; • three-dimensional resection problem for determining positions and orientation of sensors, e. g. , camera, theodolites, robots, scanners etc.