Download Free Geophysical And Geotechnical Methods For Diagnosing Flood Protection Dikes Book in PDF and EPUB Free Download. You can read online Geophysical And Geotechnical Methods For Diagnosing Flood Protection Dikes and write the review.

This book presents a three-phase methodology for the efficient diagnosis of “dry dikes”. It is invaluable for anyone involved in dike safety; notably owners, managers, engineers and contractors, and provides all the information required for effective dike diagnosis and for initiating more extensive work or more detailed study.
This technical guide is intended for personnel within services or structures involved in managing dikes that protect against floods in the case of a rise in river levels. It is intended for an audience of technicians and it aims to popularise: the functioning principles concerning a system of dikes, the risks run, monitoring methods and maintenance methods. Its aim is to justify and describe all the necessary measures to ensure the long life and security of the constructions.
This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.
Au regard du Code de l’environnement, les digues, considérées comme ouvrages hydrauliques, ne doivent pas rompre de façon dangereuse pour les populations. En tant que moyen de prévention du risque d’inondation ou de submersion, les performances et les limites de ces digues doivent être connues avec précision. Les digues de protection constituent donc une question politique mise en évidence par plusieurs événements récents (Xynthia 2010, la NouvelleOrléans 2005, Rhône aval 2003, Gard 2002, Aude 1999). Cet ouvrage rassemble les contributions présentées lors du 2e colloque national Digues maritimes et fluviales de protection contre les submersions (Digues2013), organisé par l’Irstea et Promosciences, les 12, 13 et 14 juin 2013 au Centre des Congrès d’AixenProvence, avec le soutien du MEDDE, du CFBR, et de la Région ProvenceAlpesCôte d’Azur. Il s’adresse aux maîtres d’ouvrages, gestionnaires, concepteurs, constructeurs, enseignants et chercheurs, services de contrôle, organismes financeurs, agissant dans les domaines d’activités liés, directement ou indirectement, à la sûreté des digues maritimes et fluviales.
Geotechnical Risk and Safety V contains contributions presented at the 5th International Symposium on Geotechnical Safety and Risk (5th ISGSR, Rotterdam, 13-16 October 2015) which was organized under the auspices of the Geotechnical Safety Network (GEOSNet) and the following technical committees of the of the International Society of Soil Mechanics and Geotechnical Engineering (ISSGME): • TC304 Engineering Practice of Risk Assessment & Management • TC205 Safety and Serviceability in Geotechnical Design • TC212 Deep Foundations • TC302 Forensic Geotechnical Engineering Geotechnical Risk and Safety V covers seven themes: 1. Geotechnical Risk Management and Risk Communication 2. Variability in Ground Conditions and Site Investigation 3. Reliability and Risk Analysis of Geotechnical Structures 4. Limit-state design in Geotechnical Engineering 5. Assessment and Management of Natural Hazards 6. Contractual and Legal Issues of Foundation and (Under)Ground Works 7. Case Studies, Monitoring and Observational Method The 5th ISGSR is the continuation of a series of symposiums and workshops on geotechnical risk and reliability, starting with LSD2000 (Melbourne, Australia), IWS2002 (Tokyo and Kamakura, Japan), LSD2003 (Cambridge, USA), Georisk2004 (Bangalore, India), Taipei2006 (Taipei, Taiwan), the 1st ISGSR (Shanghai, China, 2007), the 2nd ISGSR (Gifu, Japan, 2009), the 3rd ISGSR (Munich, Germany, 2011) and the 4th ISGSR (Hong Kong, 2013).
This book constitutes the refereed proceedings of the 5th International Conference on Belief Functions, BELIEF 2018, held in Compiègne, France, in September 2018.The 33 revised regular papers presented in this book were carefully selected and reviewed from 73 submissions. The papers were solicited on theoretical aspects (including for example statistical inference, mathematical foundations, continuous belief functions) as well as on applications in various areas including classification, statistics, data fusion, network analysis and intelligent vehicles.
Flood risk management policy across the European Union is changing, partly in response to the EU Floods Directive and partly because of new scientific approaches and research findings. It involves a move towards comprehensive flood risk management, which requires bringing the following fields/domains closer together: the natural sciences, social sc
Develop a Greater Understanding of How and Why Surface Wave Testing Works Using examples and case studies directly drawn from the authors’ experience, Surface Wave Methods for Near-Surface Site Characterization addresses both the experimental and theoretical aspects of surface wave propagation in both forward and inverse modeling. This book accents the key facets associated with surface wave testing for near-surface site characterization. It clearly outlines the basic principles, the theoretical framework and the practical implementation of surface wave analysis. In addition, it also describes in detail the equipment and measuring devices, acquisition techniques, signal processing, forward and inverse modeling theories, and testing protocols that form the basis of modern surface wave techniques. Review Examples of Typical Applications for This Geophysical Technique Divided into eight chapters, the book explains surface wave testing principles from data measurement to interpretation. It effectively integrates several examples and case studies illustrating how different ground conditions and geological settings may influence the interpretation of data measurements. The authors accurately describe each phase of testing in addition to the guidelines for correctly performing and interpreting results. They present variants of the test within a consistent framework to facilitate comparisons, and include an in-depth discussion of the uncertainties arising at each stage of surface wave testing. Provides a comprehensive and in-depth treatment of all the steps involved in surface wave testing Discusses surface wave methods and their applications in various geotechnical conditions and geological settings Explains how surface wave measurements can be used to estimate both stiffness and dissipative properties of the ground Addresses the issue of uncertainty, which is often an overlooked problem in surface wave testing Includes examples with comparative analysis using different processing techniques and inversion algorithms Outlines advanced applications of surface wave testing such as joint inversion, underwater investigation, and Love wave analysis Written for geotechnical engineers, engineering seismologists, geophysicists, and researchers, Surface Wave Methods for Near-Surface Site Characterization offers practical guidance, and presents a thorough understanding of the basic concepts.