Download Free Geometry Geodesics And The Universe Book in PDF and EPUB Free Download. You can read online Geometry Geodesics And The Universe and write the review.

The story of the development of geometry is told as it emerged from the concepts of the ancient Greeks, familiar from high school, to the four-dimensional space-time that is central to our modern vision of the universe. The reader is first reacquainted with the geometric system compiled by Euclid with its postulates thought to be self-evident truths. A particular focus is on Euclid’s fifth postulate, the Parallel Postulate and the many efforts to improve Euclid’s system over hundreds of years by proving it from the first four postulates. Two thousand years after Euclid, in the process that would reveal the Parallel Postulate as an independent postulate, a new geometry was discovered that changed the understanding of geometry and mathematics, while paving the way for Einstein’s General Relativity. The mathematics to describe the non-Euclidean geometries and the geometric universe of General Relativity is initiated in the language of mathematics available to a general audience. The story is told as a mathematical narrative, bringing the reader along step by step with all the background needed in analytic geometry, the calculus, vectors, and Newton’s laws to allow the reader to move forward to the revolutionary extension of geometry by Riemann that would supply Einstein with the language needed to overthrow Newton’s universe. Using the mathematics acquired for Riemannian geometry, the principles behind Einstein’s General Relativity are described and their realization in the Field Equations is presented. From the Field Equations, it is shown how they govern the curved paths of light and that of planets along the geodesics formed from the geometry of space-time, and how they provide a picture of the universe’s birth, expansion, and future. Thus, Euclid’s geometry while no longer thought to spring from perceived absolute truths as the ancients believed, ultimately provided the seed for a new understanding of geometry that in its infinite variety became central to the description of the universe, marking mathematics as a one of the great modes of human expression.
Cosmology, the study of the universe, arouses a great deal of public interest, with serious articles both in the scientific press and in major newspapers, with many of the theories and concepts (e.g. the 'big bang' and 'black holes') discussed, often in great depth.Accordingly the book is divided into three parts:Part 1 is readable (and understandable) by anyone with a nodding acquaintance with the basic language of cosmology: events, lights paths, galaxies, black holes and so on. It covers the whole story of the book in a way as untechnical as possible given the scope of the topics covered.Part 2 covers the same ground again but with enough technical details to satisfy a reader with basic knowledge of mathematics and/or physics.Part 3 consists of appendices which are referred to in the other parts and which also contain the highly technical material omitted from Section 2.
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
This book evolved out of some one hundred lectures given by twenty experts at a special instructional conference sponsored by the University Grants Commis sion, India. It is pedagogical in style and self-contained in several interrelated areas of physics which have become extremely important in present-day theoretical research. The articles begin with an introduction to general relativity and cosmology as well as particle physics and quantum field theory. This is followed by reviews of the standard gauge models of high-energy physics, renormalization group and grand unified theories. The concluding parts of the book comprise discussions in current research topics such as problems of the early universe, quantum cosmology and the new directions towards a unification of gravitation with other forces. In addition, special concise treatments of mathematical topics of direct relevance are also included. The content of the book was carefully worked out for the mutual education of students and research workers in general relativity and particle physics. This ambitious programe consequently necessitated the involvement of a number of different authors. However, care has been taken to ensure that the material meshes into a unified, cogent and readable book. We hope that the book will serve to initiate and guide a student in these different areas of investigation starting from first principles and leading to the exciting current research problems of an interdisciplinary nature in the context of the origin and structure of the universe.
The leading mind behind the mathematics of string theory discusses how geometry explains the universe we see. Illustrations.
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.