Download Free Geometric Optimal Control Book in PDF and EPUB Free Download. You can read online Geometric Optimal Control and write the review.

This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.
This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.
Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.
This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.
The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.
The lectures gathered in this volume present some of the different aspects of Mathematical Control Theory. Adopting the point of view of Geometric Control Theory and of Nonlinear Control Theory, the lectures focus on some aspects of the Optimization and Control of nonlinear, not necessarily smooth, dynamical systems. Specifically, three of the five lectures discuss respectively: logic-based switching control, sliding mode control and the input to the state stability paradigm for the control and stability of nonlinear systems. The remaining two lectures are devoted to Optimal Control: one investigates the connections between Optimal Control Theory, Dynamical Systems and Differential Geometry, while the second presents a very general version, in a non-smooth context, of the Pontryagin Maximum Principle. The arguments of the whole volume are self-contained and are directed to everyone working in Control Theory. They offer a sound presentation of the methods employed in the control and optimization of nonlinear dynamical systems.
This volume on mathematical control theory contains high quality articles covering the broad range of this field. The internationally renowned authors provide an overview of many different aspects of control theory, offering a historical perspective while bringing the reader up to the very forefront of current research.
In writing this monograph my objective is to present arecent, 'geometrie' approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. The book is addressed to graduate students specializing in control, to engineering scientists engaged in control systems research and development, and to mathematicians with some previous acquaintance with control problems. The label 'geometrie' is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometrie) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometrie properties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, not so long ago. But secondlyand of greater interest, the geometrie setting rather quickly suggested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arith metic as soonas you want to compute. The essence of the 'geometrie' approach is just this: instead of looking directly for a feedback laW (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say J. Then, if all is weIl, you may calculate F from J quite easily.
VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines.
The only monograph on the topic, this book concerns geometric methods in the theory of differential equations with quadratic right-hand sides, closely related to the calculus of variations and optimal control theory. Based on the author’s lectures, the book is addressed to undergraduate and graduate students, and scientific researchers.