Download Free Geology Of The Chesapeake And Ohio Canal National Historical Park And Potomac River Corridor Etc Us Geological Survey Open File Report 01 188 Disc 1 2001 Cd Rom Book in PDF and EPUB Free Download. You can read online Geology Of The Chesapeake And Ohio Canal National Historical Park And Potomac River Corridor Etc Us Geological Survey Open File Report 01 188 Disc 1 2001 Cd Rom and write the review.

The rapid conversion of land to urban and suburban areas has profoundly altered how water flows during and following storm events, putting higher volumes of water and more pollutants into the nation's rivers, lakes, and estuaries. These changes have degraded water quality and habitat in virtually every urban stream system. The Clean Water Act regulatory framework for addressing sewage and industrial wastes is not well suited to the more difficult problem of stormwater discharges. This book calls for an entirely new permitting structure that would put authority and accountability for stormwater discharges at the municipal level. A number of additional actions, such as conserving natural areas, reducing hard surface cover (e.g., roads and parking lots), and retrofitting urban areas with features that hold and treat stormwater, are recommended.
Running waters are enormously diverse, ranging from torrential mountain brooks, to large lowland rivers, to great river systems whose basins occupy subcontinents. While this diversity makes river ecosystems seem overwhelmingly complex, a central theme of this volume is that the processes acting in running waters are general, although the settings are often unique. The past two decades have seen major advances in our knowledge of the ecology of streams and rivers. New paradigms have emerged, such as the river continuum and nutrient spiraling. Community ecologists have made impressive advances in documenting the occurrence of species interactions. The importance of physical processes in rivers has attracted increased attention, particularly the areas of hydrology and geomorphology, and the inter-relationships between physical and biological factors have become better understood. And as is true for every area of ecology during the closing years of the twentieth century it has become apparent that the study of streams and rivers cannot be carried out by excluding the role of human activities, nor can we ignore the urgency of the need for conservation. These developments are brought together in Stream Ecology: Structure and function of running waters, designed to serve as a text for advanced undergraduate and graduate students, and as a reference book for specialists in stream ecology and related fields.
The Chesapeake and Ohio Canal National Historical Park is 184.5 mi long and extends from Washington, D.C., to Cumberland, Md. The canal passes through three physiographic provinces including the Piedmont, Valley and Ridge, and the Blue Ridge; the map area also includes rocks of the Coastal Plain and Appalachian Plateaus provinces. Each province contains unique packages of rocks that influenced the character of the canal and towpath. The ages of the bedrock encountered along the length of the park range from Mesoproterozoic to Jurassic and represent a variety of tectonic and depositional environments. The different rock types and surficial deposits dictated the various construction methods for the canal, which was excavated in Quaternary flood-plain deposits as well as through bedrock. The ancient course of the Potomac River and the deposits it left behind also influenced the location of the canal and towpath. The engineers made good use of the many rock types to construct the locks, dams, aqueducts, and culverts that guided water from the Potomac River into the canal and maintained the water level as canal boats traveled between higher elevations in western Maryland to sea level in Washington, D.C. The canal and towpath provide a unique transect across the central Appalachian region for examining the rich geologic diversity and history.
This work offers detailed information on British prosobranch molluscs.