Download Free Geologic Disposal Of High Level Radioactive Waste Book in PDF and EPUB Free Download. You can read online Geologic Disposal Of High Level Radioactive Waste and write the review.

During the next several years, decisions are expected to be made in several countries on the further development and implementation of the geological disposition option. The Board on Radioactive Waste Management (BRWM) of the U.S. National Academies believes that informed and reasoned discussion of relevant scientific, engineering and social issues can-and should-play a constructive role in the decision process by providing information to decision makers on relevant technical and policy issues. A BRWM-initiated project including a workshop at Irvine, California on November 4-5, 1999, and subsequent National Academies' report to be published in spring, 2000, are intended to provide such information to national policy makers both in the U.S. and abroad. To inform national policies, it is essential that experts from the physical, geological, and engineering sciences, and experts from the policy and social science communities work together. Some national programs have involved social science and policy experts from the beginning, while other programs have only recently recognized the importance of this collaboration. An important goal of the November workshop is to facilitate dialogue between these communities, as well as to encourage the sharing of experiences from many national programs. The workshop steering committee has prepared this discussion for participants at the workshop. It should elicit critical comments and help identify topics requiring in-depth discussion at the workshop. It is not intended as a statement of findings, conclusions, or recommendations. It is rather intended as a vehicle for stimulating dialogue among the workshop participants. Out of that dialogue will emerge the findings, conclusions, and recommendations of the National Academies' report.
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems – crystalline, clay, and salt, also discussing methods of site surveying and construction. The critical safety issue of engineered barrier systems is the focus of Part Three, with coverage ranging from nuclear waste canisters, to buffer and backfill materials. Lastly, Parts Four and Five focus on safety, security, and acceptability, concentrating on repository performance assessment, then radiation protection, environmental monitoring, and social engagement. Comprehensively revised, updated, and expanded with 25% new material on topics of current importance, this is the standard reference for all nuclear waste management and geological repository professionals and researchers. - Contains 25% more material on topics of current importance in this new, comprehensive edition - Fully updated coverage of both near-surface/intermediate depth, and deep borehole disposal in one convenient volume - Goes beyond the scientific and technical aspects of disposal to include the political, regulatory, and societal issues involved, all from an international perspective
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
The perception of radioactive waste as a major problem for the industrial world has developed only recently. Four decades ago the disposal of such waste was regarded as a relatively minor matter. Those were the heady days when nuclear fission seemed the answer to the world's energy needs: the two wartime bombs had demonstrated its awesome power, and now it was to be harnessed for the production of electricity, the excavation of canals, even the running of cars and airplanes. In all applications of fission some waste containing radioactive elements would be generated of course, but it seemed only a trivial annoyance, a problem whose solution could be deferred until the more exciting challenges of constructing reactors and devising more efficient weapons had been mastered. So waste accumulated, some in tanks and some buried in shallow trenches. These were recognized as only temporary, makeshift measures, because it was known that the debris would be hazardous to its surroundings for many thousands of years and hence that more permanent disposal would someday be needed. The difficulty of accomplishing this more lasting disposal only gradually became apparent. The difficulty has been compounded by uncertainty about the physiological effects oflow-Ievel radiation, by the inadequacy of detailed knowledge about the behavior of engineered and geologic materials over long periods under unusual conditions, and by the sensitization of popular fears about radiation in all its forms following widely publicized reactor accidents and leaks from waste storage sites.
The first purpose of this book is to provide a comprehensive review of the state of development of natural analogue studies with emphasis on those studies which are relevant to the following repository designs: Nagra (Switzerland) disposal concepts for high-level waste/low and intermediate-level waste; SKB (Sweden) disposal concepts for spent fuel/low and intermediate-level waste; and Nirex (UK) disposal concept for low and intermediate-level waste.The book's second aim is to discuss the expanding application of natural analogues for non-performance assessment purposes, especially their potential for presenting the concept of geological disposal to various interested audiences in a coherent, understandable and scientifically legitimate manner.Much of the discussion of the book is relevant to concepts for geological disposal of radioactive wastes by other countries, and is concerned only with those physico-chemical processes which control the release of radionuclides from the near-field, and their subsequent retardation and transport in the geosphere.
This Special Publication highlights the importance of clays and clayey material, and their multiple roles, in many national geological disposal facilities for higher activity radioactive wastes. Clays can be both the disposal facility host rock and part of its intrinsic engineered barriers, and may be present in the surrounding geological environment. Clays possess various characteristics that make them high-quality barriers to the migration of radionuclides and chemical contaminants, e.g. very little water movement, diffusive transport, retention capacity, self-sealing capacity, stability over millions of years, homogeneity and lateral continuity.
This book covers essential aspects of transmutation technologies, highlighting especially the advances in Japan. The accident at the Fukushima Daiichi Nuclear Power Plant (NPP) has caused us to focus attention on a large amount of spent nuclear fuels stored in NPPs. In addition, public anxiety regarding the treatment and disposal of high-level radioactive wastes that require long-term control is growing. The Japanese policy on the back-end of the nuclear fuel cycle is still unpredictable in the aftermath of the accident. Therefore, research and development for enhancing the safety of various processes involved in nuclear energy production are being actively pursued worldwide. In particular, nuclear transmutation technology has been drawing significant attention after the accident. This publication is timely with the following highlights: 1) Development of accelerator-driven systems (ADSs), which is a brand-new reactor concept for transmutation of highly radioactive wastes; 2) Nuclear reactor systems from the point of view of the nuclear fuel cycle. How to reduce nuclear wastes or how to treat them including the debris from TEPCO’s Fukushima nuclear power stations is discussed; and 3) Environmental radioactivity, radioactive waste treatment and geological disposal policy. State-of-the-art technologies for overall back-end issues of the nuclear fuel cycle as well as the technologies of transmutation are presented here. The chapter authors are actively involved in the development of ADSs and transmutation-related technologies. The future of the back-end issues in Japan is very uncertain after the accident at the Fukushima Daiichi NPP and this book provides an opportunity for readers to consider the future direction of those issues.
Experts from science, industry, and government discuss the unresolved scientific and technical issues surrounding the Yucca Mountain site as a geologic repository for high-level nuclear waste.
This Special Publication contains 43 scientific studies presented at the 5th conference on ‘Clays in natural and engineered barriers for radioactive waste confinement’ held in Montpellier, France in 2012. The conference and this resulting volume cover all the aspects of clay characterization and behaviour considered at various temporal and spatial scales relevant to the confinement of radionuclides in clay, from basic phenomenological process descriptions to the global understanding of performance and safety at repository and geological scales. Special emphasis has been given to the modelling of processes occurring at the mineralogical level within the clay barriers. The papers in this Special Publication consider research into argillaceous media under the following topic areas: large-scale geological characterization; clay-based concept/large-scale experiments; hydrodynamical modelling; geochemistry; geomechanics; mass transfer/gas transfer; mass transfer mechanisms. The collection of different topics presented in this Special Publication demonstrates the diversity of geological repository research.