Download Free Geoinformatics And Modelling Of Landslide Susceptibility And Risk Book in PDF and EPUB Free Download. You can read online Geoinformatics And Modelling Of Landslide Susceptibility And Risk and write the review.

This book discusses various statistical models and their implications for developing landslide susceptibility and risk zonation maps. It also presents a range of statistical techniques, i.e. bivariate and multivariate statistical models and machine learning models, as well as multi-criteria evaluation, pseudo-quantitative and probabilistic approaches. As such, it provides methods and techniques for RS & GIS-based models in spatial distribution for all those engaged in the preparation and development of projects, research, training courses and postgraduate studies. Further, the book offers a valuable resource for students using RS & GIS techniques in their studies.
This edited volume assesses capabilities of data mining algorithms for spatial modeling of natural hazards in different countries based on a collection of essays written by experts in the field. The book is organized on different hazards including landslides, flood, forest fire, land subsidence, earthquake, and gully erosion. Chapters were peer-reviewed by recognized scholars in the field of natural hazards research. Each chapter provides an overview on the topic, methods applied, and discusses examples used. The concepts and methods are explained at a level that allows undergraduates to understand and other readers learn through examples. This edited volume is shaped and structured to provide the reader with a comprehensive overview of all covered topics. It serves as a reference for researchers from different fields including land surveying, remote sensing, cartography, GIS, geophysics, geology, natural resources, and geography. It also serves as a guide for researchers, students, organizations, and decision makers active in land use planning and hazard management.
This book presents landslide studies using the geographic information system (GIS), which includes not only the science of GIS and remote sensing, but also technical innovations, such as detailed light detection and ranging profiles, among others. To date most of the research on landslides has been found in journals on topography, geology, geo-technology, landslides, and GIS, and is limited to specific scientific aspects. Although journal articles on GIS using landslide studies are abundant, there are very few books on this topic. This book is designed to fill that gap and show how the latest GIS technology can contribute in terms of landslide studies. In a related development, the GIS Landslide Workshop was established in Japan 7 years ago in order to communicate and solve the scientific as well as technical problems of GIS analyses, such as how to use GIS software and its functions. The workshop has significantly contributed to progress in the field. Included among the chapters of this book are GIS using susceptibility mapping, analyses of deep-seated and shallow landslides, measuring and visualization of landslide distribution in relation to topography, geological facies and structures, rivers, land use, and infrastructures such as roads and streets. Filled with photographs, figures, and tables, this book is of great value to researchers in the fields of geography, geology, seismology, environment, remote sensing, and atmospheric research, as well as to students in these fields.
With the increasing need to take an holistic view of landslide hazard and risk, this book overviews the concept of risk research and addresses the sociological and psychological issues resulting from landslides. Its integrated approach offers understanding and ability for concerned organisations, landowners, land managers, insurance companies and researchers to develop risk management solutions. Global case studies illustrate a variety of integrated approaches, and a concluding section provides specifications and contexts for the next generation of process models.
This book documents the First World Landslide Forum, which was jointly organized by the International Consortium on Landslides (ICL), eight UN organizations (UNESCO, WMO, FAO, UN/ISDR, UNU, UNEP, World Bank, UNDP) and four NGOs (International Council for Science, World Federation of Engineering Organizations, Kyoto Univ. and Japan Landslide Society) in Tokyo in 2008. The material consists of four parts: The Open Forum "Progress of IPL Activities; Four Thematic Lectures in the Plenary Symposium "Global Landslide Risk Reduction"; Six Keynote Lectures in the Plenary session; and the aims and overviews of eighteen parallel sessions (dealing with various aspects necessary for landslide disaster risk reduction such as: observations from space; climate change and slope instability; landslides threatening heritage sites; the economic and social impact of landslides; monitoring, prediction and early warning; and risk-management strategies in urban area, etc.) Thus it enables the reader to benefit from a wide range of research intended to reduce risk due to landslide disasters as presented in the first global multi-disciplinary meeting.
Geographic Information Systems for Geoscientists: Modelling with GIS provides an introduction to the ideas and practice of GIS to students and professionals from a variety of geoscience backgrounds. The emphasis in the book is to show how spatial data from various sources (principally paper maps, digital images and tabular data from point samples) can be captured in a GIS database, manipulated, and transformed to extract particular features in the data, and combined together to produce new derived maps, that are useful for decision-making and for understanding spatial interrelationship. The book begins by defining the meaning, purpose, and functions of GIS. It then illustrates a typical GIS application. Subsequent chapters discuss methods for organizing spatial data in a GIS; data input and data visualization; transformation of spatial data from one data structure to another; and the combination, analysis, and modeling of maps in both raster and vector formats. This book is intended as both a textbook for a course on GIS, and also for those professional geoscientists who wish to understand something about the subject. Readers with a mathematical bent will get more out of the later chapters, but relatively non-numerate individuals will understand the general purpose and approach, and will be able to apply methods of map modeling to clearly-defined problems.
The book demonstrates the geospatial technology approach to data mining techniques, data analysis, modeling, risk assessment, visualization, and management strategies in different aspects of natural and social hazards. This book has 25 chapters associated with risk assessment, mapping and management strategies of environmental hazards. It covers major topics such as Landslide Susceptibility, Arsenic Contaminated Groundwater, Earthquake Risk Management, Open Cast Mining, Soil loss, Flood Susceptibility, Forest Fire Risk, Malaria prevalence, Flood inundation, Socio-Economic Vulnerability, River Bank Erosion, and Socio-Economic Vulnerability. The content of this book will be of interest to researchers, professionals, and policymakers, whose work involves environmental hazards and related solutions.
A comprehensive guide to managing and mitigating natural disasters Recent years have seen a surge in the number, frequency, and severity of natural disasters, with further increases expected as the climate continues to change. However, advanced computational and geospatial technologies have enabled the development of sophisticated early warning systems and techniques to predict, manage, and mitigate disasters.Techniques for Disaster Risk Management and Mitigation explores different approaches to forecasting disasters and provides guidance on mitigation and adaptation strategies. Volume highlights include: Review of current and emerging technologies for disaster prediction Different approaches to risk management and mitigation Strategies for implementing disaster plans and infrastructure improvements Guidance on integrating artificial intelligence with GIS and earth observation data Examination of the regional and global impacts of disasters under climate variability
This exciting new volume will provide a comprehensive overview of the applications of geoinformatics technology for engineers, scientists, and students to become more productive, more aware, and more responsive to global climate change issues and how to manage sustainable development of Earth's resources. Over the last few years, the stress on natural resources has increased enormously due to anthropogenic activities especially through urbanization and industrialization processes. Sustainable development while protecting the Earth's environment involves the best possible management of natural resources, subject to the availability of reliable, accurate and timely information on regional and global scales. There is an increasing demand for an interdisciplinary approach and sound knowledge on each specific resource, as well as on the ecological and socio-economic perspectives related to their use. Geoinformatics, including Remote Sensing (RS), Geographical Information System (GIS), and Global Positioning System (GPS), is a groundbreaking and advanced technology for acquiring information required for natural resource management and addressing the concerns related to sustainable development. It offers a powerful and proficient tool for mapping, monitoring, modeling, and management of natural resources. There is, however, a lack of studies in understanding the core science and research elements of geoinformatics, as well as larger issues of scaling to use geoinformatics in sustainable development and management practices of natural resources. There is also a fundamental gap between the theoretical concepts and the operational use of these advance techniques. Sustainable Development Practices Using Geoinformatics, written by well-known academicians, experts and researchers provides answers to these problems, offering the engineer, scientist, or student the most thorough, comprehensive, and practical coverage of this subject available today, a must-have for any library.