Download Free Geochemistry And Biochemistry Book in PDF and EPUB Free Download. You can read online Geochemistry And Biochemistry and write the review.

This book includes a collection of chapters illustrating the application of geochemical methods to investigate the interactions between geological materials and fluids with humans. Examples include the incorporation and human health effects of inhaling lithogenic materials, the reactivity of biological fluids with geological materials, and the impact on nascent biomineral formation. Biomineralization is investigated in terms of mineralogy, morphology, bone chemistry, and pathological significance with a focus on the health impacts of "foreign" geological/environmental trace element incorporation. One of the contribution is devoted to particulate matter, the presence of metals and metalloids in the environment, and the possibility of using human hair as a biomarker between environmental/geological exposure and human bioincorporation. Other chapters focus on the last advances on the analytical methods and instrumentational approaches to investigating the chemistry of biological fluids and tissues.
Uniting the foundations of physics and biology, this groundbreaking multidisciplinary and integrative book explores life as a planetary process.
This book is written as a reference on organic substances in natural waters and as a supplementary text for graduate students in water chemistry. The chapters address five topics: amount, origin, nature, geochemistry, and characterization of organic carbon. Of these topics, the main themes are the amount and nature of dissolved organic carbon in natural waters (mainly fresh water, although seawater is briefly discussed). It is hoped that the reader is familiar with organic chemistry, but it is not necessary. The first part of the book is a general overview of the amount and general nature of dissolved organic carbon. Over the past 10 years there has been an exponential increase in knowledge on organic substances in water, which is the result of money directed toward the research of organic compounds, of new methods of analysis (such as gas chromatography and mass spectrometry), and most importantly, the result of more people working in this field. Because of this exponential increase in knowledge, there is a need to pull together and summarize the data that has accumulated from many disciplines over the last decade.
Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications discusses the structure, bonding and reactivity of molecules and solids of environmental interest, bringing the reactivity of non-metals and metals to inorganic chemists, geochemists and environmental chemists from diverse fields. Understanding the principles of inorganic chemistry including chemical bonding, frontier molecular orbital theory, electron transfer processes, formation of (nano) particles, transition metal-ligand complexes, metal catalysis and more are essential to describe earth processes over time scales ranging from 1 nanosec to 1 Gigayr. Throughout the book, fundamental chemical principles are illustrated with relevant examples from geochemistry, environmental and marine chemistry, allowing students to better understand environmental and geochemical processes at the molecular level. Topics covered include: • Thermodynamics and kinetics of redox reactions • Atomic structure • Symmetry • Covalent bonding, and bonding in solids and nanoparticles • Frontier Molecular Orbital Theory • Acids and bases • Basics of transition metal chemistry including • Chemical reactivity of materials of geochemical and environmental interest Supplementary material is provided online, including PowerPoint slides, problem sets and solutions. Inorganic Chemistry for Geochemistry and Environmental Sciences is a rapid assimilation textbook for those studying and working in areas of geochemistry, inorganic chemistry and environmental chemistry, wishing to enhance their understanding of environmental processes from the molecular level to the global level.
The difficult struggle to protect our valuable ground-water resources necessarily involves scientists and engineers from many disciplines. To prevail in this effort, these practitioners—including microbiologists, hydrogeologists, geoscientists, and environmental engineers—must have a common understanding of essential ground-water quality issues and problems. That includes a basic grasp of how microorganisms and microbial processes affect the chemistry of ground water in both pristine and chemically stressed aquifer systems. Ground-Water Microbiology and Geochemistry marks the first attempt to bridge the historical lack of communication among these disciplines by detailing—in language that cuts across specialties—the impact of microorganisms and microbial processes on ground-water systems. To bring these diverse practitioners together, the book has been organized in three parts, with each section addressing the information needs of specific disciplines. The first six chapters of Ground-Water Microbiology and Geochemistry provide an overview of microbiology that’s geared to geoscientists who may lack formal training in the field. Here, the book systematically covers the kinds of microorganisms found in subsurface environments, focusing on their growth, metabolism, genetics, and ecology. The second part of the book, which covers four chapters, speaks both to geoscientists and to microbiologists. It offers a hydrologic perspective on how microbial processes affect groundwater geochemistry in pristine systems—an important topic for geochemists since most ground-water reservoirs have not been chemically affected by human activities, and naturally occurring microbial processes have major impacts on water quality. At the same time, Part Two introduces microbiologists to the different classes of ground-water systems, and gives an overview of techniques for sampling subsurface environments. In addition, microbiologists gain an understanding of biogeochemical cycling in ground-water systems—in coverage that’s unique to this book—and of the classic geochemical modeling techniques that are used to study microbial processes. The final three chapters of Ground-Water Microbiology and Geochemistry focus in on microbial processes in contaminated ground-water systems—a topic of central concern to environmental scientists. In this concluding section, microbiologists see how degradation processes depend upon the hydrologic and geochemical environments within which they operate. Having achieved a basic knowledge of microbiological and biochemical concepts from the earlier chapters, geoscientists are fully prepared for this treatment of microbial acclimation and the biodegradation of petroleum hydrocarbons and halogenated compounds. Ground-Water Microbiology and Geochemistry is as graphically impressive as it is far reaching. High-quality, computer-generated illustrations, of particular appeal to visually oriented geoscientists, can be found throughout the book. Equally important is the book’s unusually comprehensive bibliography, which, like the text itself, spans the relevant science and engineering disciplines. The importance of Ground-Water Microbiology and Geochemistry to geoscientists, hydrologists, and environmental scientists has been amply documented. The book should also be required reading for water planners and lawyers involved in environmental issues. It will also serve as a compelling text in upper undergraduate and graduate courses in ground-water chemistry.
The first process-based textbook on how soils form and function in biogeochemical cycles, for advanced undergraduate and graduate students.
Geochemistry is concerned with the laws governing the distribution of the chemical elements and their isotopes throughout the Earth. As a concept it has been recognized for 130 years but it has grown into a separate Earth science during this century. Geochemistry has mutual links with many neighbouring disciplines. Its present field of activity is determined by many problems of broad interest and by the availability of methods. Several exterior influences have recently developed. Thus, nuclear physics and its specific measuring techniques made isotope geochem istry possible, while space research has stimulated the development of cosmochem istry. Except a few "standard" materials as Gland W 1 there is no other rock on earth whose composition is as well known as that of meteorites colliding with our planet on their cosmic course. Biochemistry is linked with the rapidly developing new branch of organic geochemistry. Our discipline has moved forward in step with the advancement of analytical chemistry. When optical and X-ray spectrochemical analysis came into use and with the discovery of natural and artificial radio-activity, many new elements were identified. With the development of spectrophotometers, radiation counters and nuclear sources over the last 20 years, a flood of analytical data on geological sub jects has been released, and we ought to make use of it.
This book provides a comprehensive summary of research to date in the field of stable iron isotope geochemistry. Since research began in this field 20 years ago, the field has grown to become one of the major research fields in "non-traditional" stable isotope geochemistry. This book reviews all aspects of the field, from low-temperature to high-temperature processes, biological processes, and cosmochemical processes. It provides a detailed history and state-of-the art summary about analytical methods to determine Fe-isotope ratios and discusses analytical and sample prospects.
Issues in Biochemistry and Geochemistry / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Organic Geochemistry. The editors have built Issues in Biochemistry and Geochemistry: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Organic Geochemistry in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Biochemistry and Geochemistry: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.