Download Free Genetics Of Populations Book in PDF and EPUB Free Download. You can read online Genetics Of Populations and write the review.

The Fourth Edition of Genetics of Populations is the most current, comprehensive, and accessible introduction to the field for advanced undergraduate and graduate students, and researchers in genetics, evolution, conservation, and related fields. In the past several years, interest in the application of population genetics principles to new molecular data has increased greatly, and Dr. Hedrick's new edition exemplifies his commitment to keeping pace with this dynamic area of study. Reorganized to allow students to focus more sharply on key material, the Fourth Edition integrates coverage of theoretical issues with a clear presentation of experimental population genetics and empirical data. Drawing examples from both recent and classic studies, and using a variety of organisms to illustrate the vast developments of population genetics, this text provides students and researchers with the most comprehensive resource in the field.
Loss of biodiversity is among the greatest problems facing the world today. Conservation and the Genetics of Populations gives a comprehensive overview of the essential background, concepts, and tools needed to understand how genetic information can be used to conserve species threatened with extinction, and to manage species of ecological or commercial importance. New molecular techniques, statistical methods, and computer programs, genetic principles, and methods are becoming increasingly useful in the conservation of biological diversity. Using a balance of data and theory, coupled with basic and applied research examples, this book examines genetic and phenotypic variation in natural populations, the principles and mechanisms of evolutionary change, the interpretation of genetic data from natural populations, and how these can be applied to conservation. The book includes examples from plants, animals, and microbes in wild and captive populations. This second edition contains new chapters on Climate Change and Exploited Populations as well as new sections on genomics, genetic monitoring, emerging diseases, metagenomics, and more. One-third of the references in this edition were published after the first edition. Each of the 22 chapters and the statistical appendix have a Guest Box written by an expert in that particular topic (including James Crow, Louis Bernatchez, Loren Rieseberg, Rick Shine, and Lisette Waits). This book is essential for advanced undergraduate and graduate students of conservation genetics, natural resource management, and conservation biology, as well as professional conservation biologists working for wildlife and habitat management agencies. Additional resources for this book can be found at: www.wiley.com/go/allendorf/populations.
These volumes discuss evolutionary biology through the lense of population genetics.
The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links
This book covers those areas of theoretical population genetics that can be investigated rigorously by elementary mathematical methods. I have tried to formulate the various models fairly generally and to state the biological as sumptions quite explicitly. I hope the choice and treatment of topics will en able the reader to understand and evaluate detailed analyses of many specific models and applications in the literature. Models in population genetics are highly idealized, often even over idealized, and their connection with observation is frequently remote. Further more, it is not practicable to measure the parameters and variables in these models with high accuracy. These regrettable circumstances amply justify the use of appropriate, lucid, and rigorous approximations in the analysis of our models, and such approximations are often illuminating even when exact solu tions are available. However, our empirical and theoretical limitations justify neither opaque, incomplete formulations nor unconvincing, inadequate analy ses, for these may produce uninterpretable, misleading, or erroneous results. Intuition is a principal source of ideas for the construction and investigation of models, but it can replace neither clear formulation nor careful analysis. Fisher (1930; 1958, pp. x, 23-24, 38) not only espoused similar ideas, but he recognized also that our concepts of intuition and rigor must evolve in time. The book is neither a review of the literature nor a compendium of results. The material is almost entirely self-contained. The first eight chapters are a thoroughly revised and greatly extended version of my published lecture notes (Nagylaki, 1977a).
Introductory guide to human population genetics and microevolutionary theory Providing an introduction to mathematical population genetics, Human Population Genetics gives basic background on the mechanisms of human microevolution. This text combines mathematics, biology, and anthropology and is best suited for advanced undergraduate and graduate study. Thorough and accessible, Human Population Genetics presents concepts and methods of population genetics specific to human population study, utilizing uncomplicated mathematics like high school algebra and basic concepts of probability to explain theories central to the field. By describing changes in the frequency of genetic variants from one generation to the next, this book hones in on the mathematical basis of evolutionary theory. Human Population Genetics includes: Helpful formulae for learning ease Graphs and analogies that make basic points and relate the evolutionary process to mathematical ideas Glossary terms marked in boldface within the book the first time they appear In-text citations that act as reference points for further research Exemplary case studies Topics such as Hardy-Weinberg equilibrium, inbreeding, mutation, genetic drift, natural selection, and gene flow Human Population Genetics solidifies knowledge learned in introductory biological anthropology or biology courses and makes it applicable to genetic study. NOTE: errata for the first edition can be found at the author's website: http://employees.oneonta.edu/relethjh/HPG/errata.pdf
"Wright's views about population genetics and evolution are so fundamental and so comprehensive that every serious student must examine these books firsthand. . . . Publication of this treatise is a major event in evolutionary biology."-Daniel L. Hartl, BioScience
Human Population Genetics and Genomics provides researchers/students with knowledge on population genetics and relevant statistical approaches to help them become more effective users of modern genetic, genomic and statistical tools. In-depth chapters offer thorough discussions of systems of mating, genetic drift, gene flow and subdivided populations, human population history, genotype and phenotype, detecting selection, units and targets of natural selection, adaptation to temporally and spatially variable environments, selection in age-structured populations, and genomics and society. As human genetics and genomics research often employs tools and approaches derived from population genetics, this book helps users understand the basic principles of these tools. In addition, studies often employ statistical approaches and analysis, so an understanding of basic statistical theory is also needed. - Comprehensively explains the use of population genetics and genomics in medical applications and research - Discusses the relevance of population genetics and genomics to major social issues, including race and the dangers of modern eugenics proposals - Provides an overview of how population genetics and genomics helps us understand where we came from as a species and how we evolved into who we are now
To show the importance of stochastic processes in the change of gene frequencies, the authors discuss topics ranging from molecular evolution to two-locus problems in terms of diffusion models. Throughout their discussion, they come to grips with one of the most challenging problems in population genetics--the ways in which genetic variability is maintained in Mendelian populations. R.A. Fisher, J.B.S. Haldane, and Sewall Wright, in pioneering works, confirmed the usefulness of mathematical theory in population genetics. The synthesis their work achieved is recognized today as mathematical genetics, that branch of genetics whose aim is to investigate the laws governing the genetic structure of natural populations and, consequently, to clarify the mechanisms of evolution. For the benefit of population geneticists without advanced mathematical training, Professors Kimura and Ohta use verbal description rather than mathematical symbolism wherever practicable. A mathematical appendix is included.