Download Free Genetics Genomics And Breeding Of Conifers Book in PDF and EPUB Free Download. You can read online Genetics Genomics And Breeding Of Conifers and write the review.

With contributions by internationally reputed researchers in the field, this book presents the implications of the genomic revolution for conifers—promoting a better understanding of the evolution of these organisms as well as new knowledge about the molecular basis of quantitative trait variation. Both of these discoveries play important roles in their domestication. Topics include cytogenetics, patterns of nucleotide diversity, genetic mapping, integration of molecular markers in breeding, transcriptomics, advances in proteomics and metabolomics in gymnosperms, and economic importance.
This book is the first comprehensive volume on conifers detailing their genomes, variations, and evolution. The book begins with general information about conifers such as taxonomy, geography, reproduction, life history, and social and economic importance. Then topics discussed include the full genome sequence, complex traits, phenotypic and genetic variations, landscape genomics, and forest health and conservation. This book also synthesizes the research included to provide a bigger picture and suggest an evolutionary trajectory. As a large plant family, conifers are an important part of economic botany. The group includes the pines, spruces, firs, larches, yews, junipers, cedars, cypresses, and sequoias. Of the phylum Coniferophyta, conifers typically bear cones and evergreen leaves. Recently, there has been much data available in conifer genomics with the publication of several crop and non-crop genome sequences. In addition to their economic importance, conifers are an important habitat for humans and animals, especially in developing parts of the world. The application of genomics for improving the productivity of conifer crops holds great promise to help provide resources for the most needy in the world.
Sorghum is one of the hardiest crop plants in modern agriculture and also one of the most versatile. Its seeds provide calorie for food and feed, stalks for building and industrial materials and its juice for syrup. This book provides an in-depth review of the cutting-edge knowledge in sorghum genetics and its applications in sorghum breeding. Each
Forest tree improvement has mainly been implemented to enhance the productivity of artificial forests. However, given the drastically changing global environment, improvement of various traits related to environmental adaptability is more essential than ever. This book focuses on genetic information, including trait heritability and the physiological mechanisms thereof, which facilitate tree improvement. Nineteen papers are included, reporting genetic approaches to improving various species, including conifers, broad-leaf trees, and bamboo. All of the papers in this book provide cutting-edge genetic information on tree genetics and suggest research directions for future tree improvement.
This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.
When it comes to reproduction, gymnosperms are deeply weird. Cycads and co- fers have drawn out reproduction: at least 13 genera take over a year from polli- tion to fertilization. Since they don’t apparently have any selection mechanism by which to discriminate among pollen tubes prior to fertilization, it is natural to w- der why such a delay in reproduction is necessary. Claire Williams’ book celebrates such oddities of conifer reproduction. She has written a book that turns the context of many of these reproductive quirks into deeper questions concerning evolution. The origins of some of these questions can be traced back Wilhelm Hofmeister’s 1851 book, which detailed the revolutionary idea of alternation of generations. This alternation between diploid and haploid generations was eventually to become one of the key unifying ideas in plant evolution. Dr. Williams points out that alter- tion of generations in conifers shows strong divergence in the evolution of male and female gametes, as well as in the synchronicity of male and female gamete development. How are these coordinated to achieve fertilization? Books on conifer reproduction are all too rare. The only major work in the last generation was Hardev Singh’s 1978 Embryology of Gymnosperms, a book that summarized the previous century’s work. Being a book primarily about embry- ogy, it stopped short of putting conifer reproduction in a genetic or evolutionary context.
Forest tree functional genomics; Functional genomics in forest trees; Expressed sequence tag databases from forestry tree species; Proteomics for genetic and physiological studies in forest trees: application in maritime pine; Exploring the transcriptome of the ectomycorrhizal symbiosis; Molecular biology of wood formation; Genomics of wood formation; Molecular genetics of cellulose biosynthesis in trees; Tuning lignin metabolism through genetic engineering in trees; In vitro systems for the study of wood formation; Forest tree transgenesis; Genetic modification in conifer forestry: state of the art and future potential - a case study; Transgenic forest trees for insect resistance; Modification of flowering in forest trees; Stability of transgene expression in Aspen; Asexual production of marker-free transgenetic Aspen using MAT vector systems; Genome mapping in forest trees; High-density linkage maps in conifer species and their potential application; Microsatellites in forest tree species: characteristics, identifcation , and applicatons; Genome mapping in populus; Genetic mapping in Acacias.
This book is the first comprehensive compilation of the most up-to-date research in the genomics, transcriptomics, and breeding of pine species across Europe, North America, and Australia. With chapters on the state of the reference genomes, transposon function, genome-wide diversity, functional genomics, genomics of disease resistance, genomics of abiotic stress, and genomic selection, this book is a must-read for scientists, breeders, and students of plant genomics. The book contains 12 chapters over 300 pages authored by a group of world-renowned scientists in the field of pine genomics. Pines (Pinus) are the world’s most economically important forest tree species. The recent genome sequencing of several important pine species has paved the way for understanding their complex biology and helps future management and breeding efforts.
Climate change is expected to have a drastic impact on agronomic conditions including temperature, precipitation, soil nutrients, and the incidence of disease pests, to name a few. To face this looming threat, significant progress in developing new breeding strategies has been made over the last few decades. The first volume of Genomics and Breeding for Climate-Resilient Crops presents the basic concepts and strategies for developing climate-resilient crop varieties. Topics covered include: conservation, evaluation and utilization of biodiversity; identification of traits, genes and crops of the future; genomic and molecular tools; genetic engineering; participatory and evolutionary breeding; bioinformatics tools to support breeding; funding and networking support; and intellectual property, regulatory issues, social and political dimensions. ​
Successful release of new and better crop varieties increasingly requires genomics and molecular biology. This volume presents basic information on plant molecular marker techniques from marker location up to gene cloning. The text includes a description of technical approaches in genome analysis such as comparison of marker systems, positional cloning, and array techniques in 19 crop plants. A special section focuses on converting this knowledge into general and specific breeding strategies, particularly in relation to biotic stress. Theory and practice of marker assisted selection for QTL, gene pyramiding and the future of MAS are summarized and discussed for maize, wheat, and soybean. Furthermore, approaches in silviculture on the examples of Fagus, Populus, Eucalyptus, Picea and Abies are presented. The volume ends with a comprehensive review of the patents relevant for using molecular markers and marker assisted selection.