Download Free Genetics And Genomics Of The Brassicaceae Book in PDF and EPUB Free Download. You can read online Genetics And Genomics Of The Brassicaceae and write the review.

The Genetics and Genomics of the Brassicaceae provides a review of this important family (commonly termed the mustard family, or Cruciferae). The family contains several cultivated species, including radish, rocket, watercress, wasabi and horseradish, in addition to the vegetable and oil crops of the Brassica genus. There are numerous further species with great potential for exploitation in 21st century agriculture, particularly as sources of bioactive chemicals. These opportunities are reviewed, in the context of the Brassicaceae in agriculture. More detailed descriptions are provided of the genetics of the cultivated Brassica crops, including both the species producing most of the brassica vegetable crops (B. rapa and B. oleracea) and the principal species producing oilseed crops (B. napus and B. juncea). The Brassicaceae also include important “model” plant species. Most prominent is Arabidopsis thaliana, the first plant species to have its genome sequenced. Natural genetic variation is reviewed for A. thaliana, as are the genetics of the closely related A. lyrata and of the genus Capsella. Self incompatibility is widespread in the Brassicaceae, and this subject is reviewed. Interest arising from both the commercial value of crop species of the Brassicaceae and the importance of Arabidopsis thaliana as a model species, has led to the development of numerous resources to support research. These are reviewed, including germplasm and genomic library resources, and resources for reverse genetics, metabolomics, bioinformatics and transformation. Molecular studies of the genomes of species of the Brassicaceae revealed extensive genome duplication, indicative of multiple polyploidy events during evolution. In some species, such as Brassica napus, there is evidence of multiple rounds of polyploidy during its relatively recent evolution, thus the Brassicaceae represent an excellent model system for the study of the impacts of polyploidy and the subsequent process of diploidisation, whereby the genome stabilises. Sequence-level characterization of the genomes of Arabidopsis thaliana and Brassica rapa are presented, along with summaries of comparative studies conducted at both linkage map and sequence level, and analysis of the structural and functional evolution of resynthesised polyploids, along with a description of the phylogeny and karyotype evolution of the Brassicaceae. Finally, some perspectives of the editors are presented. These focus upon the Brassicaceae species as models for studying genome evolution following polyploidy, the impact of advances in genome sequencing technology, prospects for future transcriptome analysis and upcoming model systems.
This book provides all aspects of the physiology, stress responses and tolerance to abiotic stresses of the Brassicaceae plants. Different plant families have been providing food, fodder, fuel, medicine and other basic needs for the human and animal since the ancient time. Among the plant families, Brassicaceae has special importance for their agri-horticultural importance and multifarious uses apart from the basic needs. Interest understanding the response of Brassicaceae plants toward abiotic stresses is growing considering the economic importance and the special adaptive mechanisms. The knowledge needs to be translated into improved elite lines that can contribute to achieve food security. The physiological and molecular mechanisms acting on Brassicaceae introduced in this book are useful to students and researchers working on biology, physiology, environmental interactions and biotechnology of Brassicaceae plants.
Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume. Ecological Genomics covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. Ecological Genomics covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation.
Invasion Genetics: the Baker & Stebbins legacy provides a state-of-the-art treatment of the evolutionary biology of invasive species, whilst also revisiting the historical legacy of one of the most important books in evolutionary biology: The Genetics of Colonizing Species, published in 1965 and edited by Herbert Baker and G. Ledyard Stebbins. This volume covers a range of topics concerned with the evolutionary biology of invasion including: phylogeography and the reconstruction of invasion history; demographic genetics; the role of stochastic forces in the invasion process; the contemporary evolution of local adaptation; the significance of epigenetics and transgenerational plasticity for invasive species; the genomic consequences of colonization; the search for invasion genes; and the comparative biology of invasive species. A wide diversity of invasive organisms are discussed including plants, animals, fungi and microbes.
This is the first comprehensive reference compilation on the substance class of glucosinolates. This handbook introduces the reader to the sulfur-containing glucosinolates (S-glucosides), a class of secondary metabolites of almost all plants of the order Capparales, in particular in the family Brassicaceae (e.g. broccoli and other cabbages), derived from glucose and an amino acid. The book illustrates the natural variety of glucosinolate structures, mainly derived from the precursor amino acid. Chapters describe the resulting rich bioactivity of the glucosides, for example as anti-cancer agents, insecticides, nematicides, fungicides, their potential phytotoxic effects, antimicrobial activity and their possible role in neurodegenerative diseases and human health. Different methods for the extraction, characterization, quantification and processing of the glucosinolates are introduced, and potential applications are discussed. The fate of glucosinolates during food processing is also briefly addressed. This handbook is written by leading experts and structured in different sections addressing the natural occurrence of glucosinolates, their (bio-)synthesis, bioactivity, food processing of glucosinolate-containing vegetables, health and disease-related aspects, biotechnology, and methods applied in glucosinolate-research. It is thus a rich reference source for every reader working in the field, from chemists and biotechnologists, to life scientists, pharmacists and medical scientists.
This book describes the development of genetic resources in amaranths, with a major focus on genomics, reverse, and forward genetics tools and strategies that have been developed for crop improvement. Amaranth is an ancient crop native to the New World. Interest in amaranths is being renewed, due to their adaptability, stress tolerance, and nutritional value. There are about 65 species in the genus, including Amaranthus caudatus L., A. cruentus L., and A. hypochondriacus L., which are primarily grown as protein-rich grains or pseudocereals. The genus also includes major noxious weeds (e.g., A. palmeri). The amaranths are within the Caryophyllales order and thus many species (e.g., A. tricolor) produce red (betacyanin) or yellow (betaxanthin) betalain pigments, which are chemically distinct from the anthocyanins responsible for red pigmentation in other plants. A. hypochondriacus, which shows disomic inheritance (2n = 32; n= 466 Mb), has been sequenced and annotated with 23,059 protein-coding genes. Additional members of the genus are now also been sequenced including weedy amaranths, other grain amaranths, and their putative progenitors.
This major work has but one aim: to provide breeders and researchers from the public and private sectors with all the latest information on the breeding of crops of economic relevance. Also, it serves as a major reference book for post-graduate courses and PhD courses on breeding vegetable crops, as well a one-stop-shop for horticulturists and extension agents interested in current advancements in the development of new vegetable crops varieties. Each chapter incorporates the most up-to-date information on the crops examined, and an important novelty is that, in comparison to other books already published on this subject this one contains the most cutting-edge information on molecular breeding techniques.
For a long time there has been a critical need for a book to assess the genomics of tropical plant species. At last, here it is. This brilliant book covers recent progress on genome research in tropical crop plants, including the development of molecular markers, and many more subjects. The first section provides information on crops relevant to tropical agriculture. The book then moves on to lay out summaries of genomic research for the most important tropical crop plant species.
Importance of plant diversity; Relationships between the families of flowering plants; Diversity and evolution of gymnosperms; Chloroplast genomes of plants; The mitochondrial genome of higher plants: a target for natural adaptation; Reticulate evolution in higher plants; Crucifer evolution in the post-genomic era; Genetic variation in plant populations: assessing cause an pattern; Evolution of the flower; Diversity in plant cell walls; Diversity in secondary metabolism in plants; Ecological importance of species diversity; Genomic diversity in nature and domestication; Conserving genetic diversity in plants of environmental, social or economic importance.
This volume introduces software used for gene prediction with focus on eukaryotic genomes. The chapters in this book describe software and web server usage as applied in common use-cases, and explain ways to simplify re-annotation of long available genome assemblies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary computational requirements, step-by-step, readily reproducible computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Gene Prediction: Methods and Protocols is a valuable resource for researchers and research groups working on the assembly and annotation of single species or small groups of species. Chapter 3 is available open access under a CC BY 4.0 license via link.springer.com.