Download Free Genetic Regulation Of Fat Body Remodeling In Drosophila Melanogaster Book in PDF and EPUB Free Download. You can read online Genetic Regulation Of Fat Body Remodeling In Drosophila Melanogaster and write the review.

A comparison of the genetic circuits of Homo sapiens and Drosophila reveals the evidence for deep homology.
This new volume of Current Topics in Developmental Biology covers developmental timing, with contributions from an international board of authors. The chapters provide a comprehensive set of reviews covering such topics as the timing of developmental programs in Drosophila, temporal patterning of neural progenitors, and environmental modulation of developmental timing.
Sperm Biology represents the first analysis of the evolutionary significance of sperm phenotypes and derived sperm traits and the possible selection pressures responsible for sperm-egg coevolution. An understanding of sperm evolution is fast developing and promises to shed light on many topics from basic reproductive biology to the evolutionary process itself as well as the sperm proteome, the sperm genome and the quantitative genetics of sperm. The Editors have identified 15 topics of current interest and biological significance to cover all aspects of this bizarre, fascinating and important subject. It comprises the most comprehensive and up-to-date review of the evolution of sperm and pointers for future research, written by experts in both sperm biology and evolutionary biology. The combination of evolution and sperm is a potent mix, and this is the definitive account. - The first review survey of this emerging field - Written by experts from a broad array of disciplines from the physiological and biomedical to the ecological and evolutionary - Sheds light on the intricacies of reproduction and the coevolution of sperm, egg and reproductive behavior
Methuselah Flies presents a trailblazing project on the biology of aging. It describes research on the first organisms to have their lifespan increased, and their aging slowed, by hereditary manipulation. These organisms are fruit flies from the species Drosophila melanogaster, the great workhorse of genetics. Michael Rose and his colleagues have been able to double the lifespan of these insects, and improved their health in numerous respects as well. The study of these flies with postponed aging is one of the best means we have of understanding, and ultimately achieving, the postponement of aging in humans. As such, the carefully presented detail of this book will be of value to research devoted to the understanding and control of aging.Methuselah Flies: ? is a tightly edited distillation of twenty years of work by many scientists? contains the original publications regarding the longer-lived fruit flies? offers commentaries on each of the topics covered ? new, short essays that put the individual research papers in a wider context? gives full access to the original data ? captures the scientific significance of postponed aging for a wide academic audienc
This volume covers the current knowledge base on the role of signaling and environmental pathways that control the normal development of germline stem cells, meiotic progression of oocytes, events of oocyte maturation and fertilization, and the birth of an embryo. Germ cells are uniquely poised to sustain life across generations through the fusion of oocyte and sperm. Because of the central importance of germ cells to life, much work has been dedicated to obtaining a clear understanding of the molecular and signaling events that control their formation and maintenance. Germ cells are set aside from somatic cells in the embryo and go through specialized meiotic cell cycles as the animal matures. These cell cycles are interspersed with long periods of arrest. In human females, meiosis I is initiated in the fetus. At birth, oocytes are arrested in meiosis I; after puberty, every month an oocyte initiates meiosis II – ovulation. Upon sperm availability these cells are fertilized, generate an embryo, and the cycle-of-life continues. During meiotic I progression and arrest, the fitness of oocytes and their progeny are likely influenced by environmental cues and signaling pathways. A lot of recent work has focused on understanding the mechanisms that regulate oocyte fitness and quality in humans and vertebrates. Much of our understanding on the events of meiosis I and germline stem cell populations comes from work in invertebrates, wherein the germline stem cells produce oocytes continuously through adult development. In both inverbrates and vertebrates nutritional and signaling pathways control the regulation of stem cells in such a manner so as to couple production of gametes with the nutritional availability. Additionally, mature oocytes arrest both in meiosis I and meiosis II, and signaling and nutritional pathways have been shown to regulate their formation, and maintenance, such that despite long periods of arrest, the oocyte quality is assured and errors in chromosome segregation and varied cytoplasmic events are minimal.
This volume provides a series of review articles that capture the advances in using the fruit fly, Drosophila melanogaster, model system to address a wide range of cancer-related topics. Articles in this book provide case studies that shed light on the intricate cellular and molecular mechanisms underlying tumor formation and progression. Readers will discover the beauty of the fly model’s genetic simplicity and the vast arsenal of powerful genetic tools enabling its efficient and adaptable use. This model organism has provided a unique opportunity to address questions regarding cancer initiation and development that would be extremely challenging in other model systems. This book provides a useful resource for a researcher who wishes to learn about and apply the Drosophila model to tackle fundamental questions in cancer biology, and to find new ways to fight against this devastating disease.
Our highly seasonal world restricts insect activity to brief portions of the year. This feature necessitates a sophisticated interpretation of seasonal changes and enactment of mechanisms for bringing development to a halt and then reinitiating it when the inimical season is past. The dormant state of diapause serves to bridge the unfavourable seasons, and its timing provides a powerful mechanism for synchronizing insect development. This book explores how seasonal signals are monitored and used by insects to enact specific molecular pathways that generate the diapause phenotype. The broad perspective offered here scales from the ecological to the molecular and thus provides a comprehensive view of this exciting and vibrant research field, offering insights on topics ranging from pest management, evolution, speciation, climate change and disease transmission, to human health, as well as analogies with other forms of invertebrate dormancy and mammalian hibernation.
This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.
Emphasis is placed on the elaborate cuticular matrices in insects and crustaceans, spider and insect silks, sialomes of phytophagous and blood-feeding arthropods as well as on secretions of male and female accessory glands. Focus is placed largely on insects, due to the extensive body of published research that in part is the result of available whole genome sequences of several model species (in particular Drosophila melanogaster) and accessible ESTs for other species. Such advances have facilitated fundamental insights into genomic, proteomic and molecular biology-based physiology. This new volume contains comprehensive contributions on extracellular composite matrices in arthropods. The building blocks of such matrices are formed in and secreted by single layered epithelial cells into exterior domains where their final assembly takes place.Additionally, the unique mechanical properties of natural biocomposites like chitin/chitosan, the crustacean mineralized exoskeleton, the pliant protein resilin or insect and spider silks, have inspired basic and applied research that yield sophistical biomimetics and structural biocomposite hybrids important for future industrial and biomedical use. In summary, this book provides an invaluable vast source of basic and applied information for a plethora of scientists as well as textbook for graduate and advanced undergraduate students.