Download Free Genetic Interactions Among Microorganisms In The Natural Environment Book in PDF and EPUB Free Download. You can read online Genetic Interactions Among Microorganisms In The Natural Environment and write the review.

This book gives an overview of gene transfer and stability in those aquatic and terrestrial environments where bacteria and fungi can survive and interact genetically. It examines the role played by sex between microbes in the evolution of populations and their survival. Special emphasis is placed on methodology, including the analysis by novel techniques of genetic material extracted directly from soils, rivers and lakes. The natural spread of antibiotic resistance and the safe use of genetically manipulated microbes are matters of considerable scientific, medical and public concern upon which the investigations presented here have direct bearing. This unique collection will be of value to specialist researchers in applied microbiology, ecology and biotechnology as well as biomedical scientists interested in the environmental risks of genetic engineering.
This book is a treatise on microbial ecology that covers traditional and cutting-edge issues in the ecology of microbes in the biosphere. It emphasizes on study tools, microbial taxonomy and the fundamentals of microbial activities and interactions within their communities and environment as well as on the related food web dynamics and biogeochemical cycling. The work exceeds the traditional domain of microbial ecology by revisiting the evolution of cellular prokaryotes and eukaryotes and stressing the general principles of ecology. The overview of the topics, authored by more than 80 specialists, is one of the broadest in the field of environmental microbiology. The overview of the topics, authored by more than 80 specialists, is one of the broadest in the field of environmental microbiology.
Dr. Joshua Lederberg - scientist, Nobel laureate, visionary thinker, and friend of the Forum on Microbial Threats - died on February 2, 2008. It was in his honor that the Institute of Medicine's Forum on Microbial Threats convened a public workshop on May 20-21, 2008, to examine Dr. Lederberg's scientific and policy contributions to the marketplace of ideas in the life sciences, medicine, and public policy. The resulting workshop summary, Microbial Evolution and Co-Adaptation, demonstrates the extent to which conceptual and technological developments have, within a few short years, advanced our collective understanding of the microbiome, microbial genetics, microbial communities, and microbe-host-environment interactions.
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.
Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
Sheds new light on the microbial ecology and physiology of the Earth’s polar regions. • Examines the microbial investigations during the International Polar Year of 2008 focusing on the Arctic and Antarctic, along with earlier investigations on critical environmental issues such as climate change, ozone depletion, and elemental cycling. • Offers a survey of what is known and unknown about the microbial inhabitants of polar environments, addresses the adaptations and physiology of cold-adapted microorganisms, and explores the ecological role that polar microbial communities play in biogeochemical cycling. • Presents the challenges that polar and subpolar microorganisms face and describes the lowest temperatures in which microbial life can exist—and the prospects for life on other planets. Recommended for a general microbiology audience as well as for scientists and students in all areas of biology and geomicrobiology.
Microbial ecology is one of the fastest growing fields of microbiology. This practical volume is the bench and field scientist's guide to well-established techniques for investigating microbial communities. Both for biologists just entering the field and for experienced researchers wishingto explore new areas, this book provides the theoretical background, detailed protocols, and tips from experts for working in this field. Chapters on bacteria with interesting metabolic traits are augmented with chapters on molecular techniques, lipid analysis, and appropriate sampling techniques.The final section includes up-to-date information on biofilm development and study, the science and practice of bioremediation, modeling of biological systems (including the most useful statistical parameters), and the study of phylogenetics.