Download Free Genetic Engineering And Genome Editing For Zinc Biofortification Of Rice Book in PDF and EPUB Free Download. You can read online Genetic Engineering And Genome Editing For Zinc Biofortification Of Rice and write the review.

Genetic Engineering and Genome Editing for Zinc Biofortification of Rice provides the first single-volume, comprehensive resource on genetic engineering approaches, including novel genome editing techniques, that are carried out in rice, a staple crop for much of the world's population. Dietary zinc deficiency can lead to negative health outcomes, including increased risk of stunting, respiratory diseases, diarrhea, mortality during childhood, and preterm births in pregnancy. By providing a complete view of the need for zinc biofortification in rice, sections in this book discuss state-of-the-art scientific advances, and then go further, placing them in their proper scientific, regulatory and socioeconomic contexts.While zinc biofortification can be achieved through conventional breeding, genetic engineering and agronomic practices, this is the first reference to bring all the latest insights and understanding to a comprehensive resource that is based on real-world experience and targeted applications. - Compiles the state-of-the-art information to allow fast-track understanding and application of zinc content improvement - Discusses multiple strategic and methodology approaches - Includes discussion of the socioeconomic implications of improved rice nutritional value
This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.
This book focuses on the conventional breeding approach, and on the latest high-throughput genomics tools and genetic engineering / biotechnological interventions used to improve rice quality. It is the first book to exclusively focus on rice as a major food crop and the application of genomics and genetic engineering approaches to achieve enhanced rice quality in terms of tolerance to various abiotic stresses, resistance to biotic stresses, herbicide resistance, nutritional value, photosynthetic performance, nitrogen use efficiency, and grain yield. The range of topics is quite broad and exhaustive, making the book an essential reference guide for researchers and scientists around the globe who are working in the field of rice genomics and biotechnology. In addition, it provides a road map for rice quality improvement that plant breeders and agriculturists can actively consult to achieve better crop production.
This book presents a detailed overview and critical evaluation of recent advances and remaining challenges in improving nutritional quality and/or avoiding the accumulation of undesirable substances in plants using a variety of strategies based on modern biological tools and techniques. Each review chapter provides an authoritative and insightful account of the various aspects of nutritional enhancement of plants. In the course of the last two decades, several food crops rich in macro- and micronutrients have been developed to improve health and protect a large section of the populace in developing countries from chronic diseases. Providing extensive information on these developments, this book offers a valuable resource for all researchers, students and industrialists working in agriculture, the plant sciences, agronomy, horticulture, biotechnology, food and nutrition, and the soil and environmental sciences.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Rice is a staple crop in many coastal and non-coastal areas of the globe and requires a large production area. With the increasing trends in population , it is pivotal to increase the production of this important crop for sustainability. The introduction of high-yielding rice cultivars through molecular breeding is one of the possibilities that can ensure sustainability. Additionally, development of new biotic and abiotic stress-resistant cultivars with higher nutritional value can revolutionize the rice industry.
This book describes some recent advances in rice research in terms of crop breeding and improvement (Section 1), crop production and protection (Section 2), and crop quality control and food processing (Section 3). It contains fourteen chapters that cover such topics as two-line rice breeding in India, the different aspects of aromatic rice, bacterial diseases of rice, quality control and breeding strategies, and much more. This volume is a useful reference for professionals and graduate students working in all areas of rice science and technology.
Agricultural biotechnology and the production of GM crops have been controversial despite being practiced in both developed and developing countries, the major reason being their potential negative impact on human / animal health or environment. Also prevalent is the view that it is simply unethical to engineer different forms of life in the laboratory, especially when it comes to consuming food generated through genetic engineering. GM crops have been introduced into the agricultural landscape more than 2 decades ago which has allowed us to study their effects on economy, health and the environment. Agricultural Biotechnology: Genetic Engineering for a Food Cause is a compendium of information, practices, observations and discernible insights on agriculture, biotechnology and sustainable development. The book begins by descriptions of genetic engineering practices and strategies for producing GM crops, their importance in the food chain and advantages of GM crops over non-modified crops. Followed by chapters on the strategic genetic applications and the use of synthetics microbiology and microbial symbiosis, Agricultural Biotechnology: Genetic Engineering concludes with an insight of the Future of microbiotechnology in agricultural practices. Agricultural Biotechnology: Genetic Engineering for a Food Cause fills a gap by summarizing the available literature in a wide variety of topics under one single volume, being accessible to audiences in academic, government and industry spaces. - Provides knowledge of the purposes of engineering microbes - Includes the latest techniques and practices in microbiology - Gives an insight in the future of agricultural microbiotechnology