Download Free Generation De Mouvement En Robotique Mobile Et Humanoide Book in PDF and EPUB Free Download. You can read online Generation De Mouvement En Robotique Mobile Et Humanoide and write the review.

La génération de mouvements de locomotion en robotique mobile est étudiée dans le monde académique depuis plusieurs décennies. La théorie concernant la modélisation et le contrôle des robots à roues est largement mature. Cependant, la mise en œuvre effective de ces modèles dans des conditions réelles demande des études complémentaires. Dans cette thèse, nous présentons trois projets mettant en œuvre trois différents types de robots mobiles. Nous débutons dans chaque cas par une analyse sur les qualités recherchées d'un mouvement dans un contexte particulier, qu'il soit artistique ou industriel, et terminons par la présentation des architectures algorithmiques et logicielles mises en œuvre, notamment dans le cadre d'expositions de plusieurs mois, où le public est invité à partager l'espace d'évolution de robots. La réalisation de ces projets montre que certains choix technologiques semblant insignifiants au moment de la conception des robots sont déterminants dans les dernières étapes de la production. On peut extrapoler cette remarque depuis ces robots mobile à deux ou trois degrés de liberté vers des robots humanoïdes pouvant en avoir plusieurs dizaines. La stratégie classique qui consiste à concevoir, dans un premier temps, l'architecture mécatronique des robots humanoïdes, pour se poser ensuite la question de leur contrôle, atteint ses limites, comme le montrent par exemple la consommation énergétique et la difficulté d'obtenir des mouvements de marche dynamique sur ces robots, pourtant conçus dans le but de marcher. Dans une perspective globale de conception des robots marcheurs, nous proposons un système de codesign, où il est possible d'optimiser simultanément la conception mécanique et les contrôleurs d'un robot.
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.
A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.
Written by two of Europe's leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots.·World class authority·Unique range of coverage not available in any other book·Provides a complete course on robotic control at an undergraduate and graduate level
In this book, Martijn Wisse and Richard Q. van der Linde provide a detailed description of their research on pneumatic biped robots at the Delft University of Technology, The Netherlands. The book covers the basic theory of passive dynamic walking and explains the implementation of pneumatic McKibben muscles in a series of successful prototypes.
Homogeneous transformations; Kinematic equations; Solving kinematic equations; Differential relationships; Motion trajectories; Dynamics; Control; Static forces; Compliance; Programming.
The Second Conference on Mechanisms, Transmissions and Applications - MeTrApp 2013 was organised by the Mechanical Engineering Department of the University of the Basque Country (Spain) under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines and the Spanish Association of Mechanical Engineering. The aim of the workshop was to bring together researchers, scientists, industry experts and students to provide, in a friendly and stimulating environment, the opportunity to exchange know-how and promote collaboration in the field of Mechanism and Machine Science. The topics treated in this volume are mechanism and machine design, biomechanics, mechanical transmissions, mechatronics, computational and experimental methods, dynamics of mechanisms and micromechanisms and microactuators.
Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. - Clearly and authoritatively presents mobile robot concepts - Richly illustrated throughout with figures and examples - Key concepts demonstrated with a host of experimental and simulation examples - No prior knowledge of the subject is required; each chapter commences with an introduction and background
Foundations of Robotics presents the fundamental concepts and methodologies for the analysis, design, and control of robot manipulators.
Although the body has been the focus of much contemporary cultural theory, the models that are typically applied neglect the most salient characteristics of embodied existence—movement, affect, and sensation—in favor of concepts derived from linguistic theory. In Parables for the Virtual Brian Massumi views the body and media such as television, film, and the Internet, as cultural formations that operate on multiple registers of sensation beyond the reach of the reading techniques founded on the standard rhetorical and semiotic models. Renewing and assessing William James's radical empiricism and Henri Bergson's philosophy of perception through the filter of the post-war French philosophy of Deleuze, Guattari, and Foucault, Massumi links a cultural logic of variation to questions of movement, affect, and sensation. If such concepts are as fundamental as signs and significations, he argues, then a new set of theoretical issues appear, and with them potential new paths for the wedding of scientific and cultural theory. Replacing the traditional opposition of literal and figural with new distinctions between stasis and motion and between actual and virtual, Parables for the Virtual tackles related theoretical issues by applying them to cultural mediums as diverse as architecture, body art, the digital art of Stelarc, and Ronald Reagan's acting career. The result is an intriguing combination of cultural theory, science, and philosophy that asserts itself in a crystalline and multi-faceted argument.