Download Free Generalized Measure Theory Book in PDF and EPUB Free Download. You can read online Generalized Measure Theory and write the review.

Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.
This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition includes a chapter on measure-theoretic probability theory, plus brief treatments of the Banach-Tarski paradox, the Henstock-Kurzweil integral, the Daniell integral, and the existence of liftings. Measure Theory provides a solid background for study in both functional analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are basic courses in point-set topology and in analysis, and the appendices present a thorough review of essential background material.
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
The main goal of this Handbook isto survey measure theory with its many different branches and itsrelations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications whichsupport the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the variousareas they contain many special topics and challengingproblems valuable for experts and rich sources of inspiration.Mathematicians from other areas as well as physicists, computerscientists, engineers and econometrists will find useful results andpowerful methods for their research. The reader may find in theHandbook many close relations to other mathematical areas: realanalysis, probability theory, statistics, ergodic theory,functional analysis, potential theory, topology, set theory,geometry, differential equations, optimization, variationalanalysis, decision making and others. The Handbook is a richsource of relevant references to articles, books and lecturenotes and it contains for the reader's convenience an extensivesubject and author index.