Download Free Generalized Coherent States For Discrete And Continuous Dynamics And Their Applications Book in PDF and EPUB Free Download. You can read online Generalized Coherent States For Discrete And Continuous Dynamics And Their Applications and write the review.

This monograph treats an extensively developed field in modern mathematical physics - the theory of generalized coherent states and their applications to various physical problems. Coherent states, introduced originally by Schrodinger and von Neumann, were later employed by Glauber for a quantal description of laser light beams. The concept was generalized by the author for an arbitrary Lie group. In the last decade the formalism has been widely applied to various domains of theoretical physics and mathematics. The area of applications of generalized coherent states is very wide, and a comprehensive exposition of the results in the field would be helpful. This monograph is the first attempt toward this aim. My purpose was to compile and expound systematically the vast amount of material dealing with the coherent states and available through numerous journal articles. The book is based on a number of undergraduate and postgraduate courses I delivered at the Moscow Physico-Technical Institute. In its present form it is intended for professional mathematicians and theoretical physicists; it may also be useful for university students of mathematics and physics. In Part I the formalism is elaborated and explained for some of the simplest typical groups. Part II contains more sophisticated material; arbitrary Lie groups and symmetrical spaces are considered. A number of examples from various areas of theoretical and mathematical physics illustrate advantages of this approach, in Part III. It is a pleasure for me to thank Dr. Yu. Danilov for many useful remarks.
This volume shares and makes accessible new research lines and recent results in several branches of theoretical and mathematical physics, among them Quantum Optics, Coherent States, Integrable Systems, SUSY Quantum Mechanics, and Mathematical Methods in Physics. In addition to a selection of the contributions presented at the "6th International Workshop on New Challenges in Quantum Mechanics: Integrability and Supersymmetry", held in Valladolid, Spain, 27-30 June 2017, several high quality contributions from other authors are also included. The conference gathered 60 participants from many countries working in different fields of Theoretical Physics, and was dedicated to Prof. Véronique Hussin—an internationally recognized expert in many branches of Mathematical Physics who has been making remarkable contributions to this field since the 1980s. The reader will find interesting reviews on the main topics from internationally recognized experts in each field, as well as other original contributions, all of which deal with recent applications or discoveries in the aforementioned areas.
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine. - Presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology - Features detailed reviews written by leading international researchers - Focuses on the theory of heavy ion physics in medicine
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.
The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior.
One of the most enduring elements in theoretical physics has been group theory. GROUP 24: Physical and Mathematical Aspects of Symmetries provides an important selection of informative articles describing recent advances in the field. The applications of group theory presented in this book deal not only with the traditional fields of physics, but also include such disciplines as chemistry and biology. Awarded the Wigner Medal and the Weyl Prize, respectively, H.J. Lipkin and E. Frenkel begin the volume with their contributions. Plenary session contributions are represented by 18 longer articles, followed by nearly 200 shorter articles. The book also presents coherent states, wavelets, and applications and quantum group theory and integrable systems in two separate sections. As a record of an international meeting devoted to the physical and mathematical aspects of group theory, GROUP 24: Physical and Mathematical Aspects of Symmetries constitutes an essential reference for all researchers interested in various current developments related to the important concept of symmetry.
This volume is based on the works presented at the conference “Modern Problems in Optics and Photonics-2009”, held in Yerevan Armenia. Covering virtually all actual themes in Optics: Structured media and quantum nanostructures, Quantum optics and quantum information, Spectroscopy and dynamics of atoms, both theoretical and experimental worksare examined and discussed extensively. This volume would capture the interest of experienced scientists as important, original results of 27 leading researchers from Armenia, Australia, Germany, Greece, India, Latvia, Russia, Singapore and United Kingdom are included. Surely, this volume could serve as an advanced textbook for graduate and undergraduate students as it contains not only the original works of prominent authors, but also detailed introductions and descriptions of early results of the presented branches of the optics.
Coherent states (CS) were originally introduced in 1926 by Schrödinger and rediscovered in the early 1960s in the context of laser physics. Since then, they have evolved into an extremely rich domain that pervades virtually every corner of physics, and have also given rise to a range of research topics in mathematics. The purpose of the 2016 CIRM conference was to bring together leading experts in the field with scientists interested in related topics, to jointly investigate their applications in physics, their various mathematical properties, and their generalizations in many directions. Instead of traditional proceedings, this book presents sixteen longer review-type contributions, which are the outcome of a collaborative effort by many conference participants, subsequently reviewed by independent experts. The book aptly illustrates the diversity of CS aspects, from purely mathematical topics to physical applications, including quantum gravity.
This volume is a review on coherent states and some of their applications. The usefulness of the concept of coherent states is illustrated by considering specific examples from the fields of physics and mathematical physics. Particular emphasis is given to a general historical introduction, general continuous representations, generalized coherent states, classical and quantum correspondence, path integrals and canonical formalism. Applications are considered in quantum mechanics, optics, quantum chemistry, atomic physics, statistical physics, nuclear physics, particle physics and cosmology. A selection of original papers is reprinted.