Download Free Gems Of Geometry Book in PDF and EPUB Free Download. You can read online Gems Of Geometry and write the review.

Based on a series of lectures for adult students, this lively and entertaining book proves that, far from being a dusty, dull subject, geometry is in fact full of beauty and fascination. The author's infectious enthusiasm is put to use in explaining many of the key concepts in the field, starting with the Golden Number and taking the reader on a geometrical journey via Shapes and Solids, through the Fourth Dimension, finishing up with Einstein's Theories of Relativity. Aimed at a general readership, the text makes accessible complex subjects such as Chaos and Fractals. It includes a wealth of the author's own illustrations and features appendices on related topics. Equally suitable as a gift for a youngster or as a nostalgic journey back into the world of mathematics for older readers, John Barnes' book is the perfect antidote for anyone whose maths lessons at school are a source of painful memories. Where once geometry was a source of confusion and frustration, Barnes brings enlightenment and entertainment.
Based on a series of lectures for adult students, this lively and entertaining book proves that, far from being a dusty, dull subject, geometry is in fact full of beauty and fascination. The author's infectious enthusiasm is put to use in explaining many of the key concepts in the field, starting with the Golden Number and taking the reader on a geometrical journey via Shapes and Solids, through the Fourth Dimension, finishing up with Einstein's Theories of Relativity. Equally suitable as a gift for a youngster or as a nostalgic journey back into the world of mathematics for older readers, John Barnes' book is the perfect antidote for anyone whose maths lessons at school are a source of painful memories. Where once geometry was a source of confusion and frustration, Barnes brings enlightenment and entertainment. In this second edition, stimulated by recent lectures at Oxford, further material and extra illustrations have been added on many topics including Coloured Cubes, Chaos and Crystals.
Six gems of geometry is an introductory geometry textbook for general audiences. The book focuses mainly on the teachings of Euclid. It contains a story inspired by William Blake's painting, Newton the Measurer, where an encounter is imagined between Euclid and Newton, suggesting a deep influence the former may have had on the latter.
An exquisite visual celebration of the 2,500-year history of geometry If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configurations involving infinity. The result is a delightful and informative illustrated tour through the 2,500-year-old history of one of the most important branches of mathematics.
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
How a simple equation reshaped mathematics Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.
How can we be sure that Pythagoras's theorem is really true? Why is the 'angle in a semicircle' always 90 degrees? And how can tangents help determine the speed of a bullet? David Acheson takes the reader on a highly illustrated tour through the history of geometry, from ancient Greece to the present day. He emphasizes throughout elegant deduction and practical applications, and argues that geometry can offer the quickest route to the whole spirit of mathematics at its best. Along the way, we encounter the quirky and the unexpected, meet the great personalities involved, and uncover some of the loveliest surprises in mathematics.
Following the same successful approach as Dr. Burn's previous book on number theory, this text consists of a carefully constructed sequence of questions that will enable the reader, through participation, to study all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Möbius transformations and stereographic projection, are also included. Quaternions and their relationships to 3-dimensional isometries are covered, and the climax of the book is a study of the crystallographic groups, with a complete analysis of these groups in two dimensions.
The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.