Download Free Gasoline Other Motor Fuels Book in PDF and EPUB Free Download. You can read online Gasoline Other Motor Fuels and write the review.

This paper investigates the response of consumer price inflation to changes in domestic fuel prices, looking at the different categories of the overall consumer price index (CPI). We then combine household survey data with the CPI components to construct a CPI index for the poorest and richest income quintiles with the view to assess the distributional impact of the pass-through. To undertake this analysis, the paper provides an update to the Global Monthly Retail Fuel Price Database, expanding the product coverage to premium and regular fuels, the time dimension to December 2020, and the sample to 190 countries. Three key findings stand out. First, the response of inflation to gasoline price shocks is smaller, but more persistent and broad-based in developing economies than in advanced economies. Second, we show that past studies using crude oil prices instead of retail fuel prices to estimate the pass-through to inflation significantly underestimate it. Third, while the purchasing power of all households declines as fuel prices increase, the distributional impact is progressive. But the progressivity phases out within 6 months after the shock in advanced economies, whereas it persists beyond a year in developing countries.
Slowing down global warming is one of the most critical problems facing the world’s policymakers today. One favored solution is to regulate carbon consumption through taxation, including the taxation of gasoline. Yet gasoline tax levels are much lower in the United States than elsewhere. Why is this so, and what does it tell us about the prospects for taxing carbon here? A Comparative History of Motor Fuels Taxation, 1909–2009: Why Gasoline Is Cheap and Petrol Is Dear examines these questions by tracing the evolution of gasoline tax policies in the United States, Germany, the United Kingdom, and New Zealand since the early twentieth century. In the process, it highlights the crucial role played by fiscal crises.
This volume of the IARC Monographs provides evaluations of the carcinogenicity of diesel and gasoline engine exhausts, and of 10 nitroarenes found in diesel engine exhaust: 3,7-dinitrofluoranthene, 3,9-dinitrofluoranthene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 6-nitrochrysene, 2-nitrofluorene, 1-nitropyrene, 4-nitropyrene, and 3-nitrobenzanthrone. Diesel engines are used for transport on and off roads (e.g. passenger cars, buses, trucks, trains, ships), for machinery in various industrial sectors (e.g. mining, construction), and for electricity generators, particularly in developing countries. Gasoline engines are used in cars and hand-held equipment (e.g. chainsaws). The emissions from such combustion engines comprise a complex and varying mixture of gases (e.g. carbon monoxide, nitrogen oxides), particles (e.g. PM10, PM2.5, ultrafine particles, elemental carbon, organic carbon, ash, sulfate, and metals), volatile organic compunds (e.g. benzene, formaldehyde) and semi-volatile organic compounds (e.g. polycyclic aromatic hydrocarbons) including oxygenated and nitrated derivatives of polycyclic aromatic hydrocarbons. Diesel and gasoline engines thus make a significant contribution to a broad range of air pollutants to which people are exposed in the general population as well as in different occupational settings. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of environmental or occupational exposure to diesel and gasoline engine exhausts (including those associated with the mining, railroad, construction, and transportation industries) and to 10 selected nitroarenes. -- Back cover.
The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine. This book pulls together in a single, extensively referenced volume, the three different but related topics of automotive fuels, fuel additives, and engines, and shows how all three areas work together. It includes a brief history of automotive fuels development, followed by chapters on automotive fuels manufacture from crude oil and other fossil sources. One chapter is dedicated to the manufacture of automotive fuels and fuel blending components from renewable sources. The safe handling, transport, and storage of fuels, from all sources, are covered. New combustion systems to achieve reduced emissions and increased efficiency are discussed, and the way in which the fuels’ physical and chemical characteristics affect these combustion processes and the emissions produced are included. There is also discussion on engine fuel system development and how these different systems affect the corresponding fuel requirements. Because the book is for a global market, fuel system technologies that only exist in the legacy fleet in some markets are included. The way in which fuel requirements are developed and specified is discussed. This covers test methods from simple laboratory bench tests, through engine testing, and long-term test procedures.
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Biodiesel: A Realistic Fuel Alternative for Diesel Engines describes the production and characterization of biodiesel. The book also presents current experimental research work in the field, including techniques to reduce biodiesel’s high viscosity. Researchers in renewable energy, as well as fuel engineers, will discover a myriad of new ideas and promising possibilities.
A continuous rise in the consumption of gasoline, diesel, and other petroleum-based fuels will eventually deplete reserves and deteriorate the environment, Alternative Transportation Fuels: Utilisation in Combustion Engines explores the feasibility of using alternative fuels that could pave the way for the sustained operation of the transport secto
Several Members of Congress and public interest groups have recently proposed policies that would reduce gasoline consumption in the United States. Such proposals stem primarily from a desire to enhance the nation's energy security and to decrease its emissions of carbon dioxide, a key greenhouse gas that affects the Earth's climate. This book compares three methods of reducing gasoline consumption: increasing the corporate average fuel economy (CAFE) standards that govern passenger vehicles, raising the federal tax on gasoline, and setting a limit on carbon emissions from gasoline combustion and requiring gasoline producers to hold allowances for those emissions (a policy known as a cap-and-trade program). Also, the book weighs the relative merits of those policies against several major criteria: whether they would minimise costs to producers and consumers; how reliably they would achieve a given reduction in gasoline use; their implications for automobile safety; and their effects on such factors as traffic congestion, requirements for highway construction, and emissions of air pollutants other than carbon dioxide. In addition, the book examines two more policy implications that lawmakers may be concerned about: the impact on people at different income levels and in different regions, and the effects on federal revenue.