Download Free Gas Chromatography Of Polymers Book in PDF and EPUB Free Download. You can read online Gas Chromatography Of Polymers and write the review.

In this data book, both conventional Py-GC/MS where thermal energy alone is used to cause fragmentation of given polymeric materials and reactive Py-GC/MS in the presence of organic alkaline for condensation polymers are compiled. Before going into detailed presentation of the data, however, acquiring a firm grip on the proper understanding about the situation of Py-GC/MS would promote better utilization of the following pyrolysis data for various polymers samples. This book incorporates recent technological advances in analytical pyrolysis methods especially useful for the characterization of 163 typical synthetic polymers. The book briefly reviews the instrumentation available in advanced analytical pyrolysis, and offers guidance to perform effectually this technique combining with gas chromatography and mass spectrometry. Main contents are comprehensive sample pyrograms, thermograms, identification tables, and representative mass spectra (MS) of pyrolyzates for synthetic polymers. This edition also highlights thermally-assisted hydrolysis and methylation technique effectively applied to 33 basic condensation polymers. - Coverage of Py-GC/MS data of conventional pyrograms and thermograms of basic 163 kinds of synthetic polymers together with MS and retention index data for pyrolyzates, enabling a quick identification - Additional coverage of the pyrograms and their related data for 33 basic condensation polymers obtained by the thermally-assisted hydrolysis and methylation technique - All compiled data measured under the same experimental conditions for pyrolysis, gas chromatography and mass spectrometry to facilitate peak identification - Surveyable instant information on two facing pages dedicated to the whole data of a given polymer sample
Gas Chromatography of Polymers
The methodology of analytical pyrolysis-GC/MS has been known for several years, but is seldom used in research laboratories and process control in the chemical industry. This is due to the relative difficulty of interpreting the identified pyrolysis products as well as the variety of them. This book contains full identification of several classes of polymers/copolymers and biopolymers that can be very helpful to the user. In addition, the practical applications can encourage analytical chemists and engineers to use the techniques explored in this volume.The structure and the functions of various types of pyrolyzers and the results of the pyrolysis-gas chromatographic-mass spectrometric identification of synthetic polymers/copolymers and biopolymers at 700°C are described. Practical applications of these techniques are also included, detailing the analysis of microplastics, failure analysis in the automotive industry and solutions for technological problems.
Mass Spectrometry (MS) has rapidly become an indispensable tool in polymer analysis, and modern MS today complements in many ways the structural data provided by Nuclear Magnetic Resonance (NMR) and Infrared (IR) methods. Recent advances have sparked a growing interest in this field and established a need for a summary of progress made and results
Analytical Methods for Polymer Characterization presents a collection of methods for polymer analysis. Topics include chromatographic methods (gas chromatography, inverse gas chromatography, and pyrolysis gas chromatography), mass spectrometry, spectroscopic methods (ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance), thermal analysis (differential scanning calorimetry and thermogravimetry), microscopy methods (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy), and x-ray diffraction. The author also discusses mechanical and dynamic mechanical properties.
Combining an up-to-date insight into mass-spectrometric polymer analysis beyond MALDI with application details of the instrumentation, this is a balanced and thorough presentation of the most important and widely used mass-spectrometric methods. Written by the world's most proficient experts in the field, the book focuses on the latest developments, covering such technologies and applications as ionization protocols, tandem and liquid chromatography mass spectrometry, gas-phase ion-separation techniques and automated data processing. Chapters on sample preparation, polymer degradation and the usage of mass-spectrometric tools on an industrial scale round off the book. As a result, both entrants to the field and experienced researchers are able to choose the appropriate methods and instrumentations -- and to assess their respective strengths and limitations -- for the characterization of polymer compounds.
Sample preparation is an essential step in many analyses. This book approaches the topic of sample preparation in chromatography in a methodical way, viewing it as a logical connection between sample collection and analytical chromatography. Providing a guide for choosing the appropriate sample preparation for a given analysis, this book describes various ways to process the sample, explaining the principle, discussing the advantages and disadvantages, describing the applicability to different types of samples, and showing the fitness to specific chromatographic determinations. The first part of the book contains an overview of sample preparation showing its relation to sample collection and to the core chromatographic analysis. The second part covers procedures that do not use chemical modifications of the analyte and includes methods for sample dissolution, concentration and cleanup designed mainly for modifying the initial matrix of the sample. This part starts with conventional separations such as filtration and distillation and finishes with more advanced techniques such as solid phase extraction and electroseparations. The third part gives a description of the chemical modifications that can be performed on a sample either for fractionation purposes or to improve a specific property of the analyte. This part includes derivatizations, polymer chemical degradations, and pyrolysis.
This second edition of Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency presents 14 chapters, through which a team of global, expert contributors cover a full range of microplastic research. The first chapter describes the general patterns for sources, occurrence, and transport of microplastics to lead off the book. The next batch of chapters covers sampling analytical methods for quantifying microplastics in the environment, followed by chapters addressing the association of chemicals with microplastics. A large cluster of chapters focus on the fate and transport of microplastics in wastewater treatment plants, freshwater systems, marine environment, terrestrial settings, and riverine runoff that connects terrestrial and marine systems. The next few chapters examine biotransport and effects of microplastics in organisms. The last two chapters are dedicated to two emerging research areas: nanoplastics in the environment and management strategies for global plastic pollution. Outlooks for future research to better understand the situation and further improvements of microplastic research are also covered. In the 6 years since the previous edition published, this fast-moving area has evolved, and the contents of this revision reflect that. There are numerous brand-new chapters, chapters that have been revised, and chapters that have been completely refocused. This book provides an overview of microplastics research. It is a guide for researchers to better understand the occurrence of microplastics. Ideally, this book provides basic background knowledge of microplastics for oceanographers, ecologists, and climatologists. Provides an overview of the advantages and disadvantages of different methods for sampling, identification, and enumeration of microplastics Contains contributions from world experts with a diverse range of backgrounds, all brought together by a well-known, experienced editor Presents information on microplastics in a unified place, with easy access for the reader
Analytical pyrolysis deals with the structural identification and quantitation of pyrolysis products with the ultimate aim of establishing the identity of the original material and the mechanisms of its thermal decomposition. The pyrolytic process is carried out in a pyrolyzer interfaced with analytical instrumentation such as gas chromatography (GC), mass spectrometry (MS), gas chromatography coupled with mass spectrometry (GC/MS), or with Fourier-transform infrared spectroscopy (GC/FTIR). By measurement and identification of pyrolysis products, the molecular composition of the original sample can often be reconstructed.This book is the outcome of contributions by experts in the field of pyrolysis and includes applications of the analytical pyrolysis-GC/MS to characterize the structure of synthetic organic polymers and lignocellulosic materials as well as cellulosic pulps and isolated lignins, solid wood, waste particle board, and bio-oil. The thermal degradation of cellulose and biomass is examined by scanning electron micrography, FTIR spectroscopy, thermogravimetry (TG), differential thermal analysis, and TG/MS. The calorimetric determination of high heating values of different raw biomass, plastic waste, and biomass/plastic waste mixtures and their by-products resulting from pyrolysis is described.
STATIC HEADSPACE-GAS CHROMATOGRAPHY THE ONLY REFERENCE TO PROVIDE BOTH CURRENT AND THOROUGH COVERAGE OF THIS IMPORTANT ANALYTICAL TECHNIQUE Static headspace-gas chromatography (HS-GC) is an indispensable technique for analyzing volatile organic compounds, enabling the analyst to assay a variety of sample matrices while avoiding the costly and time-consuming preparation involved with traditional GC. Static Headspace-Gas Chromatography: Theory and Practice has long been the only reference to provide in-depth coverage of this method of analysis. The Second Edition has been thoroughly updated to reflect the most recent developments and practices, and also includes coverage of solid-phase microextraction (SPME) and the purge-and-trap technique. Chapters cover: Principles of static and dynamic headspace analysis, including the evolution of HS-GC methods and regulatory methods using static HS-GC Basic theory of headspace analysis—physicochemical relationships, sensitivity, and the principles of multiple headspace extraction HS-GC techniques—vials, cleaning, caps, sample volume, enrichment, and cryogenic techniques Sample handling Cryogenic HS-GC Method development in HS-GC Nonequilibrium static headspace analysis Determination of physicochemical functions such as vapor pressures, activity coefficients, and more Comprehensive and focused, Static Headspace-Gas Chromatography, Second Edition provides an excellent resource to help the reader achieve optimal chromatographic results. Practical examples with original data help readers to master determinations in a wide variety of areas, such as forensic, environmental, pharmaceutical, and industrial applications.