Download Free Fuzzy Logic For Embedded Systems Applications Book in PDF and EPUB Free Download. You can read online Fuzzy Logic For Embedded Systems Applications and write the review.

Extensive coverage of both the theory and application of fuzzy logic design.
Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning.This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field.
In this practical guide, experienced embedded engineer Lewin Edwards demonstrates faster, lower-cost methods for developing high-end embedded systems. With today's tight schedules and lower budgets, embedded designers are under greater pressure to deliver prototypes and system designs faster and cheaper. Edwards demonstrates how the use of the right tools and operating systems can make seemingly impossible deadlines possible. Designer's Guide to Embedded Systems Development shares many advanced, in-the-trenches design secrets to help engineers achieve better performance on the job. In particular, it covers many of the newer design tools supported by the GPL (GNU Public License) system. Code examples are given to provide concrete illustrations of tasks described in the text. The general procedures are applicable to many possible projects based on any 16/32-bit microcontroller. The book covers choosing the right architecture and development hardware to fit the project; choosing an operating system and developing a toolchain; evaluating software licenses and how they affect a project; step-by-step building instructions for gcc, binutils, gdb and newlib for the ARM7 core used in the case study project; prototyping techniques using a custom printed circuit board; debugging tips; and portability considerations. A wealth of practical tips, tricks and techniques Design better, faster and more cost-effectively
This book introduces a dynamic, on-line fuzzy inference system. In this system membership functions and control rules are not determined until the system is applied and each output of its lookup table is calculated based on current inputs. The book describes the real-world uses of new fuzzy techniques to simplify readers’ tuning processes and enhance the performance of their control systems. It further contains application examples.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. The Handbook of Research on Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.
This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors.
This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems.
This volume covers the integration of fuzzy logic and expert systems. A vital resource in the field, it includes techniques for applying fuzzy systems to neural networks for modeling and control, systematic design procedures for realizing fuzzy neural systems, techniques for the design of rule-based expert systems using the massively parallel processing capabilities of neural networks, the transformation of neural systems into rule-based expert systems, the characteristics and relative merits of integrating fuzzy sets, neural networks, genetic algorithms, and rough sets, and applications to system identification and control as well as nonparametric, nonlinear estimation. Practitioners, researchers, and students in industrial, manufacturing, electrical, and mechanical engineering, as well as computer scientists and engineers will appreciate this reference source to diverse application methodologies. - Fuzzy system techniques applied to neural networks for modeling and control - Systematic design procedures for realizing fuzzy neural systems - Techniques for the design of rule-based expert systems - Characteristics and relative merits of integrating fuzzy sets, neural networks, genetic algorithms, and rough sets - System identification and control - Nonparametric, nonlinear estimation Practitioners, researchers, and students in industrial, manufacturing, electrical, and mechanical engineering, as well as computer scientists and engineers will find this volume a unique and comprehensive reference to these diverse application methodologies
Examines the integration of hardware with stand-alone PV panels and real time monitoring of factors affecting the efficiency of the photovoltaic panels Offers the real time implementation of soft computing and embedded system in the area of solar energy Discusses how soft computing plays a huge role in the prediction of efficiency of stand-alone and grid connected solar PV systems Discusses how embedded system applications with smart monitoring can control and enhance the efficiency of stand-alone and grid connected solar PV systems Explores swarm intelligence techniques for solar PV parameter estimation