Download Free Fuzzy Logic And System Models In Water Book in PDF and EPUB Free Download. You can read online Fuzzy Logic And System Models In Water and write the review.

FUZZY LOGIC AND SYSTEM MODELS IN WATER SCIENCES Kitabı İçindekiler Introduction Fuzzy Sets and Water Sciences Fuzzy Relationships in Water Sciences Approximate Reasoning Fuzzy Logic System Models Applications in Hydrology
Fuzzy Systems Modeling in Environmental and Health Risk Assessment Demonstrates the successful application of fuzzy systems modeling to real-world environmental and health problems In Fuzzy Systems Modeling in Environmental and Health Risk Assessment, a team of distinguished researchers delivers an up-to-date collection of the most successful and innovative attempts to apply fuzzy logic to problems involving environmental risk assessment, healthcare decision-making, the management of water distribution networks, and the optimization of water treatment and waste management systems. By explaining both the theoretical and practical aspects of using fuzzy systems modeling methods to solve complex problems, analyze risks and optimize system performance, this handy guide maintains a strongly application-oriented perspective throughout, offering readers a practical treatment of a cutting-edge subject. Readers will also find: Comprehensive explorations of the practical applications of fuzzy systems modeling in environmental science Practical advice on environmental quality assessments and human health risk analyses In-depth case studies involving air and water pollution, solid waste, indoor swimming pool and landfill risk assessments, wastewater treatment, and more Perfect for environmental engineers and scientists, Fuzzy Systems Modeling in Environmental and Health Risk Assessment will also benefit policy makers, computer scientists, mathematicians, and researchers and practitioners interested in applying soft computing theories to environmental problems.
Engineers have attempted to solve water resources engineering problems with the help of empirical, regression-based and numerical models. Empirical models are not universal, nor are regression-based models. The numerical models are, on the other hand, physics-based but require substantial data measurement and parameter estimation. Hence, there is a need to employ models that are robust, user-friendly, and practical and that do not have the shortcomings of the existing methods. Artificial intelligence methods meet this need. Soft Computing in Water Resources Engineering introduces the basics of artificial neural networks (ANN), fuzzy logic (FL) and genetic algorithms (GA). It gives details on the feed forward back propagation algorithm and also introduces neuro-fuzzy modelling to readers. Artificial intelligence method applications covered in the book include predicting and forecasting floods, predicting suspended sediment, predicting event-based flow hydrographs and sedimentographs, locating seepage path in an earth-fill dam body, and the predicting dispersion coefficient in natural channels. The author also provides an analysis comparing the artificial intelligence models and contemporary non-artificial intelligence methods (empirical, numerical, regression, etc.). The ANN, FL, and GA are fairly new methods in water resources engineering. The first publications appeared in the early 1990s and quite a few studies followed in the early 2000s. Although these methods are currently widely known in journal publications, they are still very new for many scientific readers and they are totally new for students, especially undergraduates. Numerical methods were first taught at the graduate level but are now taught at the undergraduate level. There are already a few graduate courses developed on AI methods in engineering and included in the graduate curriculum of some universities. It is expected that these courses, too, will soon be taught at the undergraduate levels.
What is fuzzy logic?--a system of concepts and methods for exploring modes of reasoning that are approximate rather than exact. While the engineering community has appreciated the advances in understanding using fuzzy logic for quite some time, fuzzy logic's impact in non-engineering disciplines is only now being recognized. The authors of Fuzzy Logic in Geology attend to this growing interest in the subject and introduce the use of fuzzy set theory in a style geoscientists can understand. This is followed by individual chapters on topics relevant to earth scientists: sediment modeling, fracture detection, reservoir characterization, clustering in geophysical data analysis, ground water movement, and time series analysis.George Klir is the Distinguished Professor of Systems Science and Director of the Center for Intelligent Systems, Fellow of the IEEE and IFSA, editor of nine volumes, editorial board member of 18 journals, and author or co-author of 16 booksForeword by the inventor of fuzzy logic-- Professor Lotfi Zadeh
Hydroinformatics is an emerging subject that is expected to gather speed, momentum and critical mass throughout the forthcoming decades of the 21st century. This book provides a broad account of numerous advances in that field - a rapidly developing discipline covering the application of information and communication technologies, modelling and computational intelligence in aquatic environments. A systematic survey, classified according to the methods used (neural networks, fuzzy logic and evolutionary optimization, in particular) is offered, together with illustrated practical applications for solving various water-related issues. ...
This book constitutes the refereed proceedings of the 8th Dortmund Fuzzy Days, held in Dortmund, Germany, 2004. The Fuzzy-Days conference has established itself as an international forum for the discussion of new results in the field of Computational Intelligence. All the papers had to undergo a thorough review guaranteeing a solid quality of the programme. The papers are devoted to foundational and practical issues in fuzzy systems, neural networks, evolutionary algorithms, and machine learning and thus cover the whole range of computational intelligence.
This book introduces a dynamic, on-line fuzzy inference system. In this system membership functions and control rules are not determined until the system is applied and each output of its lookup table is calculated based on current inputs. The book describes the real-world uses of new fuzzy techniques to simplify readers’ tuning processes and enhance the performance of their control systems. It further contains application examples.
As the climate and environment continue to fluctuate, researchers are urgently looking for new ways to preserve our limited resources and prevent further environmental degradation. The answer can be found through computer science, a field that is evolving at precisely the time it is needed most. Soft Computing Applications for Renewable Energy and Energy Efficiency brings together the latest technological research in computational intelligence and fuzzy logic as a way to care for our environment. This reference work highlights current advances and future trends in environmental sustainability using the principles of soft computing, making it an essential resource for students, researchers, engineers, and practitioners in the fields of project engineering and energy science.
Hydrological Systems Modeling is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. This 2-volume set contains several chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It carries state-of-the-art knowledge in the fields of Hydrological Systems Modeling and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.