Download Free Future Challenges For The Us Geological Surveys Mineral Resources Program Book in PDF and EPUB Free Download. You can read online Future Challenges For The Us Geological Surveys Mineral Resources Program and write the review.

The committee assesses the USGS's responses to a 1996 program review, evaluates the minerals information team, and examines how the program's mission and vision might evolve to meet the nation's future needs over the next decade.
As the importance and dependence of specific mineral commodities increase, so does concern about their supply. The United States is currently 100 percent reliant on foreign sources for 20 mineral commodities and imports the majority of its supply of more than 50 mineral commodities. Mineral commodities that have important uses and face potential supply disruption are critical to American economic and national security. However, a mineral commodity's importance and the nature of its supply chain can change with time; a mineral commodity that may not have been considered critical 25 years ago may be critical today, and one considered critical today may not be so in the future. The U.S. Geological Survey has produced this volume to describe a select group of mineral commodities currently critical to our economy and security. For each mineral commodity covered, the authors provide a comprehensive look at (1) the commodity's use; (2) the geology and global distribution of the mineral deposit types that account for the present and possible future supply of the commodity; (3) the current status of production, reserves, and resources in the United States and globally; and (4) environmental considerations related to the commodity's production from different types of mineral deposits. The volume describes U.S. critical mineral resources in a global context, for no country can be self-sufficient for all its mineral commodity needs, and the United States will always rely on global mineral commodity supply chains. This volume provides the scientific understanding of critical mineral resources required for informed decisionmaking by those responsible for ensuring that the United States has a secure and sustainable supply of mineral commodities.
Reliable, affordable, and technically recoverable energy is central to the nation's economic and social vitality. The United States is both a major consumer of geologically based energy resources from around the world and - increasingly of late - a developer of its own energy resources. Understanding the national and global availability of those resources as well as the environmental impacts of their development is essential for strategic decision making related to the nation's energy mix. The U.S. Geological Survey Energy Resources Program is charged with providing unbiased and publicly available national- and regional-scale assessments of the location, quantity, and quality of geologically based energy resources and with undertaking research related to their development. At the request of the Energy Resources Program (ERP), this publication considers the nation's geologically based energy resource challenges in the context of current national and international energy outlooks. Future Directions for the U.S. Geological Survey's Energy Resources Program examines how ERP activities and products address those challenges and align with the needs federal and nonfederal consumers of ERP products. This study contains recommendations to develop ERP products over the next 10-15 years that will most effectively inform both USGS energy research priorities and the energy needs and priorities of the U.S. government.
Minerals are part of virtually every product we use. Common examples include copper used in electrical wiring and titanium used to make airplane frames and paint pigments. The Information Age has ushered in a number of new mineral uses in a number of products including cell phones (e.g., tantalum) and liquid crystal displays (e.g., indium). For some minerals, such as the platinum group metals used to make cataytic converters in cars, there is no substitute. If the supply of any given mineral were to become restricted, consumers and sectors of the U.S. economy could be significantly affected. Risks to minerals supplies can include a sudden increase in demand or the possibility that natural ores can be exhausted or become too difficult to extract. Minerals are more vulnerable to supply restrictions if they come from a limited number of mines, mining companies, or nations. Baseline information on minerals is currently collected at the federal level, but no established methodology has existed to identify potentially critical minerals. This book develops such a methodology and suggests an enhanced federal initiative to collect and analyze the additional data needed to support this type of tool.
Science at the U.S. Geological Survey (USGS) is intrinsically global, and from early in its history, the USGS has successfully carried out international projects that serve U.S. national interests and benefit the USGS domestic mission. Opportunities abound for the USGS to strategically pursue international science in the next 5-10 years that bears on growing worldwide problems having direct impact on the United States-climate and ecosystem changes, natural disasters, the spread of invasive species, and diminishing natural resources, to name a few. Taking a more coherent, proactive agency approach to international science-and building support for international projects currently in progress-would help the USGS participate in international science activities more effectively.
Geoscience data and collections (such as, rock and sediment cores, geophysical data, engineering records, and fossils) are necessary for industries to discover and develop domestic natural resources to fulfill the nation's energy and mineral requirements and to improve the prediction of immediate and long term hazards, such as land slides, volcanic eruptions and global climate change. While the nation has assembled a wealth of geoscience data and collections, their utility remains incompletely tapped. Many could act as invaluable resources in the future but immediate action is needed if they are to remain available. Housing of and access to geoscience data and collections have become critical issues for industry, federal and state agencies, museums, and universities. Many resources are in imminent danger of being lost through mismanagement, neglect, or disposal. A striking 46 percent of the state geological surveys polled by the committee reported that there is no space available or they have refused to accept new material. In order to address these challenges, Geoscience Data and Collections offers a comprehensive strategy for managing geoscience data and collections in the United States.
Science is increasingly driven by data, and spatial data underpin the science directions laid out in the 2007 U.S. Geological Survey (USGS) Science Strategy. A robust framework of spatial data, metadata, tools, and a user community that is interactively connected to use spatial data in an efficient and flexible way-known as a spatial data infrastructure (SDI)-must be available for scientists and managers to find, use, and share spatial data both within and beyond the USGS. Over the last decade, the USGS has conducted breakthrough research that has overcome some of the challenges associated with implementing a large SDI. Advancing Strategic Science: A Spatial Data Infrastructure Roadmap for the U.S. Geological Survey is intended to ground those efforts by providing a practical roadmap to full implementation of an SDI to enable the USGS to conduct strategic science.
Senior managers and Heads of Geological Survey Organizations (GSOs) from around the world have contributed a collection of papers to provide a benchmark on how GSOs are responding to national and international needs in a rapidly changing world. GSOs continue to provide key scientific information about Earth systems, natural hazards and climate change. As countries adopt sustainable development principles and the public increasingly turns to social media to find information about resource and environmental issues, the generation and communication of Earth science knowledge become increasingly important. This volume provides a snapshot of how GSOs are adapting their activities to this changing world. The different national perspectives presented converge around several common themes related to resources, environment and big data. Climate change and the UN’s Sustainable Development Goals provide an increased incentive for GSOs of the world to work in harmony, to generate knowledge of Earth systems and to provide solutions for sustainable management of the planet.