Download Free Future Biofuel Research Book in PDF and EPUB Free Download. You can read online Future Biofuel Research and write the review.

This report is the multi-year result of the work of the UFOP Expert Commission „Biofuels & Renewable Resources“ on current and future fields of action in biofuels, which are of great importance in view of climate change. The expert commission supports the UFOP in all matters relating to biofuel research, with particular emphasis on biofuels from rapeseed oil. The committee acts in an advisory capacity and is made up of experts from scientific research, the vehicle and petroleum industry and trade associations. The expert commission initiates research projects that are funded by UFOP or in cooperation with other institutions. The research reports are published at www.ufop.de.
Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-criteria Decision Making provides a comprehensive sustainability analysis of biofuels based on life cycle thinking and develops various multi-dimensional decision-making techniques for prioritizing biofuel production technologies. Taking a transversal approach, the book combines life cycle sustainability assessment, life cycle assessment, life cycle costing analysis, social life cycle assessment, sustainability metrics, triple bottom line, operations research methods, and supply chain design for investigating the critical factors and key enablers that influence the sustainable development of biofuel industry. This book will equip researchers and policymakers in the energy sector with the scientific methodology and metrics needed to develop strategies for viable sustainability transition. It will be a key resource for students, researchers and practitioners seeking to deepen their knowledge on energy planning and current and future trends of biofuel as an alternative fuel. - Provides an innovative approach to promoting sustainable development in biofuel production by linking supply chain design and decision support with the life cycle perspective - Features case studies and examples that illustrate the theory and methods developed - Includes material on corporate social responsibility and economic analysis of biofuels that is highly useful to policy-makers and administrators in both government and enterprise sectors
Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each
Extensive effort is being made globally to develop various biofuels as an inexhaustible and renewable energy source. Biofuels are viewed as promising alternatives to conventional fossil fuels because they have the potential to eliminate major environmental problems such as global warming and climate change created by fossil fuels. Among the still-developing biofuel technologies, biodiesel production from algae offers a good prospect for large-scale practical use, considering the fact that algae are capable of producing much more yield than other biofuels such as corn and soybean crops. Although research on algae-based biofuel is still in its developing stage, extensive work on laboratory- and pilot-scale algae-harvesting systems with promising prospects has been reported. This chapter presents a discussion of the literature review of recent advances in algal biomass harvesting. The chapter focuses on stability and separability of algae and algae-harvesting methods. Challenges and prospects of algae harvesting are also outlined. The review aims to provide useful information for future development of efficient and commercially viable algal biodiesel production.
This comprehensive volume developed under the guidance of guest editors Prakash Lakshmanan and David Songstad features broad coverage of the topic of biofuels and its significance to the economy and to agriculture. These chapters were first published by In Vitro Cellular and Developmental Biology In Vitro Plant in 2009 and consists of 15 chapters from experts who are recognized both for their scientific accomplishments and global perspective in their assigned topics.
This will be a comprehensive multi-contributed reference work, with the Editors being highly regarded alternative fuels experts from India and Switzerland. There will be a strong orientation toward production of biofuels covering such topics as biodiesel from renewable sources, biofuels from biomass, vegetable based feedstocks from biofuel production, global demand for biofuels and economic aspects of biofuel production. Book covers the latest advances in all product areas relative to biofuels. Discusses coverage of public opinion related to biofuels. Chapters will be authored by world class researchers and practitioners in various aspects of biofuels. Provides good comprehensive coverage of biofuels for algae. Presents extensive discussion of future prospects in biofuels.
Biofuel is a renewable energy source produced from natural materials. The benefits of biofuels over traditional petroleum fuels include greater energy security, reduced environmental impact, foreign exchange savings, and socioeconomic issues related to the rural sector. The most common biofuels are produced from classic food crops that require high-quality agricultural land for growth. However, bioethanol can be produced from plentiful, domestic, cellulosic biomass resources such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal and industrial solid waste streams. There is also a growing interest in the use of vegetable oils for making biodiesel. “Biofuels: Securing the Planet’s Future Energy Needs” discusses the production of transportation fuels from biomass (such as wood, straw and even household waste) by Fischer-Tropsch synthesis. The book is an important text for students and researchers in energy engineering, as well as professional fuel engineers.
This book discusses the commercialization of biofuels and the Brazilian government policies for the promotion of renewable energy program in Brazil, which could be a learning module for several countries for implementing biofuels policy to improve their socioeconomic status and make them energy independent. Researchers in academia and industries, policy makers, and economic analysts will be assisted by important source of information in their ongoing research and future perspectives. This book will benefit graduate and postgraduate students of chemical and biochemical engineering, forestry, microbiology, biochemistry, biotechnology, applied chemistry, environmental science, sustainable energy, and biotech business disciplines by signifying the applied aspects of bioenergy production from various natural sources and their implications. Graduate and postgraduate students as well as postdoctoral researchers will find clear concepts of feedstock analysis, feedstock degradation, microbial fermentation, genetic engineering, renewable energy generation and storage, climate changes, and techno-economic analysis of biofuels production technologies.
This book discusses various renewable energy resources and technologies. Topics covered include recent advances in photobioreactor design; microalgal biomass harvesting, drying, and processing; and technological advances and optimised production systems as prerequisites for achieving a positive energy balance. It highlights alternative resources that can be used to replace fossil fuels, such as algal biofuels, biodiesel, bioethanol, and biohydrogen. Further, it reviews microbial technologies, discusses an immobilization method, and highlights the efficiency of enzymes as a key factor in biofuel production. In closing, the book outlines future research directions to increase oil yields in microalgae, which could create new opportunities for lipid-based biofuels, and provides an outlook on the future of global biofuel production. Given its scope, the book will appeal to all researchers and engineers working in the renewable energy sector.
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.