Download Free Fungal Biotechnology For Biofuel Production Book in PDF and EPUB Free Download. You can read online Fungal Biotechnology For Biofuel Production and write the review.

Due to the huge quantity and diverse nature of their metabolic pathways, fungi have great potential to be used for the production of different biofuels such as bioethanol, biobutanol, and biodiesel. This book presents recent advances, as well as challenges and promises, of fungal applications in biofuel production, subsequently discussing plant pathogenic fungi for bioethanol and biodiesel production, including their mechanisms of action. Additionally, this book reviews biofuel production using plant endophytic fungi, wood-rotting fungi, fungal biocontrol agents, and gut fungi, and it investigates highly efficient fungi for biofuel production and process design in fungal-based biofuel production systems. Finally, life cycle assessment of fungal-based biofuel production systems are discussed in this volume.
Mycology: Current and Future Developments is a book series that brings together the latest contributions to research on the biology, genetics, and industrial use of fungi. Each book chapter is written by academic / professional experts from around the world. The book series is of interest to mycologists and allied researchers seeking to gain new knowledge perspectives about fungi. This volume of the book series focuses chiefly on advances biofuel production. Topics covered in this volume include an overview of biofuel production, the use of lignocelluloses in fungal biofuel production, fungal metabolic engineering, biomass pretreatment for biofuel refineries, and more. The volume also contains chapters about research on other fungi such as S. Cerevisiae. The reviews presented in this volume serve as a useful reference for researchers and readers interested in learning about new developments in biofuel production at a time when the need for alternative energy sources is ever increasing.
This new edition of The Fungi provides a comprehensive introduction to the importance of fungi in the natural world and in practical applications, from a microbiological perspective.
This book covers the applications of fungi used in biorefinery technology. As a great many different varieties of fungal species are available, the text focuses on the various applications of fungi for production of useful products including organic acids (lactic, citric, fumaric); hydrolytic enzymes (amylase, cellulases, xylanases, ligninases, lipases, pectinases, proteases); advanced biofuels (ethanol, single cell oils); polyols (xylitol); single cell protein (animal feed); secondary metabolites; and much more.
This volume provides a comprehensive overview of the major applications and potential of fungal biotechnology. The respective chapters report on the latest advances and opportunities in each topic area, proposing new and sustainable solutions to some of the major challenges faced by modern society. Aimed at researchers and biotechnologists in academia and industry, it represents essential reading for anyone interested in fungal biotechnology, as well as those working within the broader area of microbial biotechnology. Written in an accessible language, the book also offers a valuable reference resource for decision-makers in government and at non-governmental organizations who are involved in the development of cleaner technologies and the global bioeconomy. The 21st century is characterized by a number of critical challenges in terms of human health, developing a sustainable bioeconomy, facilitating agricultural production, and establishing practices that support a cleaner environment. While there are chemical solutions to some of these challenges, developing bio-based approaches is becoming increasingly important. Filamentous fungi, ‘the forgotten kingdom,’ are a group of unique organisms whose full potential has yet to be revealed. Some key properties, such as their exceptional capacity to secrete proteins into the external environment, have already been successfully harnessed for the production of industrial enzymes and cellulosic biofuels. Many further aspects discussed here –such as feeding the hungry with fungal protein, and the potential applications of the various small molecules produced by fungi –warrant further exploration. In turn, the book covers the use of fungal cell factories to produce foreign molecules, e.g. for therapeutics. Strategies including molecular approaches to strain improvement, and recent advances in high-throughput technologies, which are key to finding better products and producers, are also addressed. Lastly, the book discusses the advent of synthetic biology, which is destined to greatly expand the scope of fungal biotechnology. The chapter “Fungal Biotechnology in Space: Why and How?” is available open access under a Creative Commons Attribution 4.0 International License at link.springer.com.
This book summarizes the early successes, drawbacks and accomplishments in cell biology and cell biotechnology achieved by the latest projects performed on the International Space Station ISS. It also depicts outcomes of experiments in tissue engineering, cancer research and drug design and reveals the chances that research in Space offers for medical application on Earth. This SpringerBriefs volume provides an overview on the latest international activities in Space and gives an outlook on the potential of biotechnological research in Space in future. This volume is written for students and researchers in Biomedicine, Biotechnology and Pharmacology and may specifically be of interest to scientists with focus on protein sciences, crystallization, tissue engineering, drug design and cancer research.
Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass describes the different aspects of biofuel production from lignocellulosic biomass. Each chapter presents different technological approaches for cost effective liquid biofuel production from agroresidues/biomass. Two chapters cover future direction and the possibilities of biomass-based biofuel production at the industrial level. The book provides a genetic and metabolic engineering approach for improved cellulase production and the potential of strains that can ferment both pentose and hexose sugars. The book also gives direction on how to overcome challenges for the further advancement of lignocellulosic biomass-based biofuel production. - Covers genetic engineering approaches for higher cellulase production from fungi - Includes genetic and metabolic engineering approaches for development of potential pentose and hexose fermenting strain which can tolerate high ethanol and toxic phenolic compounds - Describe different bioreactors used in different steps of biomass-based biofuel production - Outlines future prospects and potential of biofuel production from lignocellulosic biomass
White biotechnology is industrial biotechnology dealing with various biotech products through applications of microbes. The main application of white biotechnology is commercial production of various useful organic substances, such as acetic acid, citric acid, acetone, glycerine, etc., and antibiotics like penicillin, streptomycin, mitomycin, etc., and value added product through the use of microorganisms especially fungi and bacteria. The value-added products included bioactive compounds, secondary metabolites, pigments and industrially important enzymes for potential applications in agriculture, pharmaceuticals, medicine and allied sectors for human welfare. In the 21st century, techniques were developed to harness fungi to protect human health (through antibiotics, antimicrobial, immunosuppressive agents, value-added products etc.), which led to industrial scale production of enzymes, alkaloids, detergents, acids, biosurfactants. The first large-scale industrial applications of modern biotechnology have been made in the areas of food and animal feed production (agricultural/green biotechnology) and pharmaceuticals (medical/red biotechnology). In contrast, the production of bio-active compounds through fermentation or enzymatic conversion is known industrial or white biotechnology. The beneficial fungal strains may play important role in agriculture, industry and the medical sectors. The beneficial fungi play a significance role in plant growth promotion, and soil fertility using both, direct (solubilization of phosphorus, potassium and zinc; production of indole acetic acid, gibberellic acid, cytokinin and siderophores) and indirect (production of hydrolytic enzymes, siderophores, ammonia, hydrogen cyanides and antibiotics) mechanisms of plant growth promotion for sustainable agriculture. The fungal strains and their products (enzymes, bio-active compounds and secondary metabolites) are very useful for industry. The discovery of antibiotics is a milestone in the development of white biotechnology. Since then, white biotechnology has steadily developed and now plays a key role in several industrial sectors, providing both high valued nutraceuticals and pharmaceutical products. The fungal strains and bio-active compounds also play important role in the environmental cleaning. This volume covers the latest research developments related to value-added products in white biotechnology through fungi.
This book presents in-depth information on the state of the art of global biodiesel production and investigates its impact on climate change. Subsequently, it comprehensively discusses biodiesel production in terms of production systems (reactor technologies) as well as biodiesel purification and upgrading technologies. Moreover, the book reviews essential parameters in biodiesel production systems as well as major principles of operation, process control, and trouble-shooting in these systems. Conventional and emerging applications of biodiesel by-products with a view to further economize biodiesel production are also scrutinized. Separate chapters are dedicated to economic risk analysis and critical comparison of biodiesel production systems as well as techno-economical aspects of biodiesel plants. The book also thoroughly investigates the important aspects of biodiesel production and combustion by taking advantage of advanced sustainability analysis tools including life cycle assessment (LCA) and exergy techniques. In closing, the application of Omics technologies in biodiesel production is presented and discussed. This book is relevant to anyone with an interest in renewable, more sustainable fuel and energy solutions.
Harnessing fungi’s enzymatic ability to break down lignocellulolytic biomass to produce ethanol more efficiently and cost-effectively has become a significant research and industrial interest. Fungi and Lignocellulosic Biomass provides readers with a broad range of information on the uses and untapped potential of fungi in the production of bio-based fuels. With information on the molecular biological and genomic aspects of fungal degradation of plant cell walls to the industrial production and application of key fungal enzymes, chapters in the book cover topics such as enzymology of cellulose, hemicelluloses, and lignin degradation. Edited by a leading researcher in the field, Fungi and Lignocellulosic Biomass will be a valuable tool in advancing the development and production of biofuels and a comprehensive resource for fungal biologists, enzymologists, protein chemists, biofuels chemical engineers, and other research and industry professionals in the field of biomass research.