Download Free Fundamentals Of Optimization Book in PDF and EPUB Free Download. You can read online Fundamentals Of Optimization and write the review.

This textbook is for readers new or returning to the practice of optimization whose interest in the subject may relate to a wide range of products and processes. Rooted in the idea of “minimum principles,” the book introduces the reader to the analytical tools needed to apply optimization practices to an array of single- and multi-variable problems. While comprehensive and rigorous, the treatment requires no more than a basic understanding of technical math and how to display mathematical results visually. It presents a group of simple, robust methods and illustrates their use in clearly-defined examples. Distinct from the majority of optimization books on the market intended for a mathematically sophisticated audience who might want to develop their own new methods of optimization or do research in the field, this volume fills the void in instructional material for those who need to understand the basic ideas. The text emerged from a set of applications-driven lecture notes used in optimization courses the author has taught for over 25 years. The book is class-tested and refined based on student feedback, devoid of unnecessary abstraction, and ideal for students and practitioners from across the spectrum of engineering disciplines. It provides context through practical examples and sections describing commercial application of optimization ideas, such as how containerized freight and changing sea routes have been used to continually reduce the cost of moving freight across oceans. It also features 2D and 3D plots and an appendix illustrating the most widely used MATLAB optimization functions.
Optimization is a key concept in mathematics, computer science, and operations research, and is essential to the modeling of any system, playing an integral role in computer-aided design. Fundamentals of Optimization Techniques with Algorithms presents a complete package of various traditional and advanced optimization techniques along with a variety of example problems, algorithms and MATLAB© code optimization techniques, for linear and nonlinear single variable and multivariable models, as well as multi-objective and advanced optimization techniques. It presents both theoretical and numerical perspectives in a clear and approachable way. In order to help the reader apply optimization techniques in practice, the book details program codes and computer-aided designs in relation to real-world problems. Ten chapters cover, an introduction to optimization; linear programming; single variable nonlinear optimization; multivariable unconstrained nonlinear optimization; multivariable constrained nonlinear optimization; geometric programming; dynamic programming; integer programming; multi-objective optimization; and nature-inspired optimization. This book provides accessible coverage of optimization techniques, and helps the reader to apply them in practice. - Presents optimization techniques clearly, including worked-out examples, from traditional to advanced - Maps out the relations between optimization and other mathematical topics and disciplines - Provides systematic coverage of algorithms to facilitate computer coding - Gives MATLAB© codes in relation to optimization techniques and their use in computer-aided design - Presents nature-inspired optimization techniques including genetic algorithms and artificial neural networks
This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.
Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors’ recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors’ recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.
A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.
A thorough and highly accessible resource for analysts in a broadrange of social sciences. Optimization: Foundations and Applications presents a series ofapproaches to the challenges faced by analysts who must find thebest way to accomplish particular objectives, usually with theadded complication of constraints on the available choices.Award-winning educator Ronald E. Miller provides detailed coverageof both classical, calculus-based approaches and newer,computer-based iterative methods. Dr. Miller lays a solid foundation for both linear and nonlinearmodels and quickly moves on to discuss applications, includingiterative methods for root-finding and for unconstrainedmaximization, approaches to the inequality constrained linearprogramming problem, and the complexities of inequality constrainedmaximization and minimization in nonlinear problems. Otherimportant features include: More than 200 geometric interpretations of algebraic results,emphasizing the intuitive appeal of mathematics Classic results mixed with modern numerical methods to aidusers of computer programs Extensive appendices containing mathematical details importantfor a thorough understanding of the topic With special emphasis on questions most frequently asked by thoseencountering this material for the first time, Optimization:Foundations and Applications is an extremely useful resource forprofessionals in such areas as mathematics, engineering, economicsand business, regional science, geography, sociology, politicalscience, management and decision sciences, public policy analysis,and numerous other social sciences. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available upon request from the Wileyeditorial department.
This volume presents the fundamentals of nonlinear and mixed-integer optimisation, and their applications in the important area of process synthesis in chemical engineering. Topics that are unique include the theory and methods for mixed-integer nonlinear optimisation, introduction to modelling issues in process synthesis, and optimisation-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems.
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.
This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.