Download Free Fundamentals Of Microfluidics And Lab On A Chip For Biological Analysis And Discovery Book in PDF and EPUB Free Download. You can read online Fundamentals Of Microfluidics And Lab On A Chip For Biological Analysis And Discovery and write the review.

"Lab-on-a-chip technology now permits us to make many important discoveries that can only be observed at the microscale or the nanoscale. The newest advances employed in biological and biochemical analysis translate into greater sensitivity, more accurate results, and more valuable findings. Fundamentals of Microfluidics and Lab on a Chip for Biological Analysis and Discovery focuses on all key aspects of the microfluidic lab-on-a-chip technologies to offer an overview of the science, its limitations, breakthroughs made over the years, and currently emerging advances." --Book Jacket.
Lab-on-a-chip technology permits us to make many important discoveries that can only be observed at the microscale or the nanoscale. Using this technology, biological and biochemical analyses translate into greater sensitivity, more accurate results, and more valuable findings. Authored by one of the field's pioneering researchers, Fundamentals of
Responding to the need for an affordable, easy-to-read textbook that introduces microfluidics to undergraduate and postgraduate students, this concise book will provide a broad overview of the important theoretical and practical aspects of microfluidics and lab-on-a-chip, as well as its applications.
Labs on Chip: Principles, Design and Technology provides a complete reference for the complex field of labs on chip in biotechnology. Merging three main areas— fluid dynamics, monolithic micro- and nanotechnology, and out-of-equilibrium biochemistry—this text integrates coverage of technology issues with strong theoretical explanations of design techniques. Analyzing each subject from basic principles to relevant applications, this book: Describes the biochemical elements required to work on labs on chip Discusses fabrication, microfluidic, and electronic and optical detection techniques Addresses planar technologies, polymer microfabrication, and process scalability to huge volumes Presents a global view of current lab-on-chip research and development Devotes an entire chapter to labs on chip for genetics Summarizing in one source the different technical competencies required, Labs on Chip: Principles, Design and Technology offers valuable guidance for the lab-on-chip design decision-making process, while exploring essential elements of labs on chip useful both to the professional who wants to approach a new field and to the specialist who wants to gain a broader perspective.
A timely, accessible survey of the multidisciplinary field of bioanalytical chemistry Provides an all in one approach for both beginners and experts, from a broad range of backgrounds, covering introductions, theory, advanced concepts and diverse applications for each method Each chapter progresses from basic concepts to applications involving real samples Includes three new chapters on Biomimetic Materials, Lab-on-Chip, and Analytical Methods Contains end-of-chapter problems and an appendix with selected answers
Key features include: Self-assessment questions and exercises Chapters start with essential principles, then go on to address more advanced topics More than 1300 references to direct the reader to key literature and further reading Highly illustrated with 450 figures, including chemical structures and reactions, functioning principles, constructive details and response characteristics Chemical sensors are self-contained analytical devices that provide real-time information on chemical composition. A chemical sensor integrates two distinct functions: recognition and transduction. Such devices are widely used for a variety of applications, including clinical analysis, environment monitoring and monitoring of industrial processes. This text provides an up-to-date survey of chemical sensor science and technology, with a good balance between classical aspects and contemporary trends. Topics covered include: Structure and properties of recognition materials and reagents, including synthetic, biological and biomimetic materials, microorganisms and whole-cells Physicochemical basis of various transduction methods (electrical, thermal, electrochemical, optical, mechanical and acoustic wave-based) Auxiliary materials used e.g. synthetic and natural polymers, inorganic materials, semiconductors, carbon and metallic materials properties and applications of advanced materials (particularly nanomaterials) in the production of chemical sensors and biosensors Advanced manufacturing methods Sensors obtained by combining particular transduction and recognition methods Mathematical modeling of chemical sensor processes Suitable as a textbook for graduate and final year undergraduate students, and also for researchers in chemistry, biology, physics, physiology, pharmacology and electronic engineering, this bookis valuable to anyone interested in the field of chemical sensors and biosensors.
Microfluidics or lab-on-a-chip (LOC) is an important technology suitable for numerous applications from drug delivery to tissue engineering. Microfluidic devices for biomedical applications discusses the fundamentals of microfluidics and explores in detail a wide range of medical applications. The first part of the book reviews the fundamentals of microfluidic technologies for biomedical applications with chapters focussing on the materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies. Chapters in part two examine applications in drug discovery and controlled-delivery including micro needles. Part three considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering. The final part of the book covers the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. Microfluidic devices for biomedical applications is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries.
The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.
This detailed volume explores the use of single-cell assays in research for drug discovery, microfluidics, and more. The book delves into methodologies involving a variety of cell types and diseases, small molecules and biologics, as well as studies of the genome and transciptome. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Single-Cell Assays: Microfluidics, Genomics, and Drug Discovery serves to enable researchers to obtain a rapid overview in state-of-the-art microfluidic single-cell assays and an impression of what possibilities these assays offer to drug discovery.
As Star Trek celebrates its 50th anniversary, the futuristic tools of Kirk, Spock, Scott, and McCoy continue to come to life. This book merges Star Trek scientific lore—how the science of the time informed the implementation of technology in the series—and the science as it is playing out today. Scientists and engineers have made and continue to develop replicators, teletransporters, tractor beams, and vision restoring visors. This book combines the vision of 1966 science fiction with the latest research in physics, biotechnology, and engineering.