Download Free Fundamentals Of Metal Machining And Machine Tools Book in PDF and EPUB Free Download. You can read online Fundamentals Of Metal Machining And Machine Tools and write the review.

In the more than 15 years since the second edition of Fundamentals of Machining and Machine Tools was published, the industry has seen many changes. Students must keep up with developments in analytical modeling of machining processes, modern cutting tool materials, and how these changes affect the economics of machining. With coverage reflecting state-of-the-art industry practice, Fundamentals of Machining and Machine Tools, Third Edition emphasizes underlying concepts, analytical methods, and economic considerations, requiring only basic mathematics and physics. This book thoroughly illustrates the causes of various phenomena and their effects on machining practice. The authors include several descriptions of modern analytical methods, outlining the strengths and weaknesses of the various modeling approaches. What's New in the Third Edition? Recent advances in super-hard cutting tool materials, tool geometries, and surface coatings Advances in high-speed machining and hard machining New trends in cutting fluid applications, including dry and minimum-quantity lubrication machining New developments in tool geometries for chip breaking and chip control Improvements in cost modeling of machining processes, including application to grinding processes Supplying abundant examples, illustrations, and homework problems, Fundamentals of Machining and Machine Tools, Third Edition is an ideal textbook for senior undergraduate and graduate students studying metal cutting, machining, machine tool technology, machining applications, and manufacturing processes.
Reflecting changes in machining practice, Fundamentals of Machining and Machine Tools, Third Edition emphasizes the economics of machining processes and design for machining. This edition includes new material on super-hard cutting tool materials, tool geometries, and surface coatings. It describes recent developments in high-speed machining, hard machining, and cutting fluid applications such as dry and minimum-quantity lubrication machining. It also presents analytical methods that outline the limitations of various approaches. This edition features expanded information on tool geometries for chip breaking and control as well as improvements in cost modeling of machining processes.
The Book Is Intended To Serve As A Textbook For The Final And Pre-Final Year B.Tech. Students Of Mechanical, Production, Aeronautical And Textile Engineering Disciplines. It Can Be Used Either For A One Or A Two Semester Course. The Book Covers The Main Areas Of Interest In Metal Machining Technology Namely Machining Processes, Machine Tools, Metal Cutting Theory And Cutting Tools. Modern Developments Such As Numerical Control, Computer-Aided Manufacture And Non-Conventional Processes Have Also Been Treated. Separate Chapters Have Been Devoted To The Important Topics Of Machine Tool Vibration, Surface Integrity And Machining Economics. Data On Recommended Cutting Speeds, Feeds And Tool Geometry For Various Operations Has Been Incorporated For Reference By The Practising Engineer.Salient Features Of Second Edition * Two New Chapters Have Been Added On Nc And Cnc Machines And Part Programming. * All Chapters Have Been Thoroughly Revised And Updated With New Information. * More Solved Examples Have Been Added. * New Material On Tool Technology. * Improved Quality Of Figures And More Photographs.
Fundamentals of Machining and Machine Tools deals with analytical modeling techniques of machining processes, modern cutting tool materials and their effects on the economics of machining. The book thoroughly illustrates the causes of various phenomena and their effects on machining practice. It includes description of machining processes outlining the merits and de-merits of various modeling approaches. Spread in 22 chapters, the book is broadly divided in four sections: 1. Machining Processes 2. Cutting Tools 3. Machine Tools 4. Automation Data on cutting parameters for machining operations and main characteristics of machine tools have been separately provided in Annexures. In addition to exhaustive theory, a number of numerical examples have been solved and arranged in various chapters. Question bank has been given at the end of every chapter. The book is a must for anyone involved in metal cutting, machining, machine tool technology, machining applications, and manufacturing processes
Offering complete coverage of the technologies, machine tools, and operations of a wide range of machining processes, Machining Technology presents the essential principles of machining and then examines traditional and nontraditional machining methods. Available for the first time in one easy-to-use resource, the book elucidates the fundame
Traditional Machining Technology describes the fundamentals, basic elements, and operations of general-purpose metal cutting and abrasive machine tools used for the production and grinding of cylindrical and flat surfaces by turning, drilling, and reaming; shaping and planing; and milling processes. Special-purpose machines and operations used for thread cutting, gear cutting, and broaching processes are included along with semiautomatic, automatic, NC, and CNC machine tools; operations, tooling, mechanisms, accessories, jigs and fixtures, and machine-tool dynamometry are discussed. The treatment throughout the book is aimed at motivating and challenging the reader to explore technologies and economically viable solutions regarding the optimum selection of machining operations for a given task. This book will be useful to professionals, students, and companies in the industrial, manufacturing, mechanical, materials, and production engineering fields.
Metal cutting is widely used in producing manufactured products. The technology has advanced considerably along with new materials, computers and sensors. This new edition considers the scientific principles of metal cutting and their practical application to manufacturing problems. It begins with metal cutting mechanics, principles of vibration and experimental modal analysis applied to solving shop floor problems. There is in-depth coverage of chatter vibrations, a problem experienced daily by manufacturing engineers. Programming, design and automation of CNC (computer numerical control) machine tools, NC (numerical control) programming and CAD/CAM technology are discussed. The text also covers the selection of drive actuators, feedback sensors, modelling and control of feed drives, the design of real time trajectory generation and interpolation algorithms and CNC-oriented error analysis in detail. Each chapter includes examples drawn from industry, design projects and homework problems. This is ideal for advanced undergraduate and graduate students and also practising engineers.
New edition (previous, 1975) of a textbook for a college-level course in the principles of machine tools and metal machining. Math demands are limited to introductory calculus and that encountered in basic statics and dynamics. Topics include: operations, mechanics of cutting, temperature, tool life
Metal machining is the most widespread metal-shaping process in the mechanical manufacturing industry. World-wide investment in metal machining tools increases year on year - and the wealth of nations can be judged by it. This text - the most up-to-date in the field - provides in-depth discussion of the theory and application of metal machining at an advanced level. It begins with an overview of the development of metal machining and its role in the current industrial environment and continues with a discussion of the theory and practice of machining. The underlying mechanics are analysed in detail and there are extensive chapters examining applications through a discussion of simulation and process control. "Metal Machining: Theory and Applications" is essential reading for senior undergraduates and postgraduates specialising in cutting technology. It is also an invaluable reference tool for professional engineers. Professors Childs, Maekawa, Obikawa and Yamane are four of the leading authorities on metal machining and have worked together for many years.Of interest to all mechanical, manufacturing and materials engineersTheoretical and practical problems addressed
Geometry of Single-Point Turning Tools and Drills outlines clear objectives of cutting tool geometry selection and optimization, using multiple examples to provide a thorough explanation. It addresses several urgent problems that many present-day tool manufacturers, tool application specialists, and tool users, are facing. It is both a practical guide, offering useful, practical suggestions for the solution of common problems, and a useful reference on the most important aspects of cutting tool design, application, and troubleshooting practices. Covering emerging trends in cutting tool design, cutting tool geometry, machining regimes, and optimization of machining operations, Geometry of Single-Point Turning Tools and Drills is an indispensable source of information for tool designers, manufacturing engineers, research workers, and students.