Download Free Fundamentals Of Low Dimensional Magnets Book in PDF and EPUB Free Download. You can read online Fundamentals Of Low Dimensional Magnets and write the review.

A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets and magnetic materials. The basic concepts, various synthetic approaches, characterizations, and mathematical understanding of nanomaterials are provided. Some fundamental applications of 1D, 2D, and 3D materials are covered. This book provides the fundamentals of low-dimensional magnets along with synthesis, theories, structure-property relations, and applications of ferromagnetic nanomaterials. This book broadens our fundamental understanding of ferromagnetism and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity.
A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets and magnetic materials. The basic concepts, various synthetic approaches, characterizations, and mathematical understanding of nanomaterials are provided. Some fundamental applications of 1D, 2D, and 3D materials are covered. This book provides the fundamentals of low-dimensional magnets along with synthesis, theories, structure-property relations, and applications of ferromagnetic nanomaterials. This book broadens our fundamental understanding of ferromagnetism and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity.
The Fundamentals of Magnetism is a truly unique reference text, that explores the study of magnetism and magnetic behavior with a depth that no other book can provide. It covers the most detailed descriptions of the fundamentals of magnetism providing an emphasis on statistical mechanics which is absolutely critical for understanding magnetic behavior. The books covers the classical areas of basic magnetism, including Landau Theory and magnetic interactions, but features a more concise and easy-to-read style. Perfect for upper-level graduate students and industry researchers, The Fundamentals of Magnetism provides a solid background of fundamentals with clear and in-depth explanations, in comparison to a brief overview before moving into more advanced topics. Many applications directly for the purpose of a deep understanding of magnetism and other non-cooperative phenomena help readers make the transition from theory to application and experimentation effortless. This book is the true 'study' of the fundamentals of magnetism, enabling readers to move into far more advance aspects of magnetism more easily. - Offers accessible, self-contained content without needing to seek other sources on topics like Fermion fas; angular moment algebra, etc - Includes over 60 pages devoted to an in-depth discussion of diamagnetism and paramagnetism, topics usually described in only few pages in other books - Incorporates numerous applications including Molecular Magnets and other non-cooperative phenomena
The demand for advanced energy devices such as high-performance batteries, supercapacitors, fuel cells, electrolyzers, and flexible/wearable devices is increasing rapidly. To meet such demand, high-performance and stable materials that could be used as active materials in these devices are much needed. This book focuses on the use of hydrogels in such emerging applications. The main objective of this book is to provide current, state-of-the-art development in hydrogel-based materials, their applications in energy, and their future challenges. This book covers the entire spectrum of hydrogels for their applications in a range of energy devices in terms of materials, various synthetic approaches, architectural aspects, design and technology of energy devices, and challenges. This book covers the fundamentals of hydrogels, various composites of hydrogels, design concepts, different technologies, and applications in the diverse energy area. All chapters are written by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries working in these areas. This book includes topics such as various approaches to synthesizing hydrogels, their characterizations, and emerging applications in the energy area. Fundamentals of energy devices, working principles, and their challenges are also covered. This book will provide new directions to scientists, researchers, and students to better understand hydrogel-based materials and their emerging applications in energy.
Bioelectronics is emerging as a new area of research where electronics can selectively detect, record, and monitor physiological signals. This is a rapidly expanding area of medical research, that relies heavily on multidisciplinary technology development and cutting-edge research in chemical, biological, engineering, and physical science. This book provides extensive information on the (i) fundamental concepts of bioelectronics, (ii) materials for the developments of bioelectronics such as implantable electronics, self-powered devices, bioelectronic sensors, flexible bioelectronics, etc, and (iii) an overview of the trends and gathering of the latest bioelectronic progress. This book will broaden our knowledge about newer technologies and processes used in bioelectronics.
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, Raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, Raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
Emerging Energy Materials: Applications and Challenges guides the reader through materials used in progressive energy systems. It tackles their use in energy storage across solar, bio, geothermal, wind, fossil, hydrogen, nuclear, and thermal energy. Specific chapters are dedicated to energy reaping systems currently in development. This book contributes to the current literature by highlighting concerns that are frequently overlooked in energy materials textbooks. Awareness of these challenges and contemplation of possible solutions is critical for advancing the field of energy material technologies. Key features: Provides up-to-date information on the synthesis, characterization, and a range of applications using various physical and chemical methods Presents the latest advances in future energy materials and technologies subjected to specific applications Includes applied illustrations, references, and advances in order to explain the challenges and trade-offs in the field of energy material research and development Includes coverage of solar cell and photovoltaic, hydro power, nuclear energy, fuel cell, battery electrode, supercapacitor and hydrogen storage applications This book is a timely reference for researchers looking to improve their understanding of emerging energy materials, as well as postgraduate students considering a career within materials science, renewable energy and materials chemistry.
"3D bioprinting" refers to processes in which an additive manufacturing approach is used to create devices for medical applications. This volume considers exciting applications for 3D bioprinting, including its use in manufacturing artificial tissues, surgical models, and orthopedic implants. The book includes chapters from leaders in the field on 3D bioprinting of tissues and organs, biomedical applications of digital light processing, biomedical applications of nozzle-free pyro-electrohydrodynamic jet printing of buffer-free bioinks, additive manufacturing of surgical models, dental crowns, and orthopedic implants, 3D bioprinting of dry electrodes, and 3D bioprinting for regenerative medicine and disease modeling of the ocular surface. This is an accessible reference for students and researchers on current 3D bioprinting technology, providing helpful information on the important applications of this technology. It will be a useful resource to students, researchers, and practitioners in the rapidly growing global 3D bioprinting community.
Fundamentals of Physics is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. The Theme on Fundamentals of Physics provides an overview of the modern areas in physics, most of which had been crystallized in the 20th century, is given. The Theme on Fundamentals of Physics deals, in three volumes and cover several topics, with a myriad of issues of great relevance to our world such as: Historical Review of Elementary Concepts in Physics; Laws of Physical Systems; Particles and Fields; Quantum Systems; Order and Disorder in Nature; Topical Review: Nuclear Processes, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers, NGOs and GOs.
This two-volume book provides fundamentals of low dimensional magnets and a comprehensive discussion on magnetic nanomaterials for emerging applications.