Download Free Fundamentals Of Air Quality Book in PDF and EPUB Free Download. You can read online Fundamentals Of Air Quality and write the review.

This concise overview of issues related to air quality starts with basic principles of physics and chemistry and moves to a discussion of the latest science around such issues as radiative transfer, atmospheric boundary layer and chemistry transport models.
This new edition of the premier air pollution textbook is completely updated and revised to include all components of the 1990 Clean Air Act Amendments. Fundamentals of Air Pollution, Third Edition covers the spectrum of topics pertinent to the study of air pollution: elements, sources, effects, measurement, monitoring, meteorology, and regulatory and engineering control. In addition, the textbook features new chapters on atmospheric emissions from hazardous waste sites, air pathways from hazardous waste sites, and the long-term effects of air pollution on the earth. It also presents updated information on acidic development, long-distance transport, atmospheric chemistry, and mathematical modeling. With extensive references, suggested reading lists, questions, and new figures and tables, this text will serve as an invaluable resource for students and practitioners alike. * This new edition features coverage of: Regulatory requirements of the Clean Air Act Amendments of 1990 New developments in the modelling of air quality Air pollution control Air pollution engineering/atmospheric chemistry
Fundamentals of Air Pollution is an important and widely used textbook in the environmental science and engineering community. This thoroughly revised fifth edition of Fundamentals of Air Pollution has been updated throughout and remains the most complete text available, offering a stronger systems perspective and more coverage of international issues relating to air pollution. Sections on pollution control have been reorganized and updated to demonstrate the move from regulation and control approaches to green and sustainable engineering approaches. The fifth edition maintains a strong interdisciplinary approach to the study of air pollution, covering such topics as chemistry, physics, meteorology, engineering, toxicology, policy, and regulation. New material includes near-road air pollution, new risk assessment approaches, indoor air quality, the impact of biofuels and fuel additives, mercury emissions, forecasting techniques, and the most recent results from the National Air Toxics Assessment. - Stronger systems approach, emphasizing the impact of air pollution on ecosystems and human health - Risks, measures, models, and control of air pollution are discussed at scale – starting at the individual/niche level and expanding to planetary/global scale - Increased emphasis on international issues, including coverage of European initiatives and discussions of the impact of emerging economies like India and China - Updated references, standards, and methods throughout the book make this the most current air pollution text/reference on the market - All new end-of-chapter problems enhance its usefulness as a course text
A rigorous and thorough analysis of the production of air pollutants and their control, this text is geared toward chemical and environmental engineering students. Topics include combustion, principles of aerosol behavior, theories of the removal of particulate and gaseous pollutants from effluent streams, and air pollution control strategies. 1988 edition.Reprint of the Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1988 edition.
A single reference to all aspects of contemporary air dispersion modeling The practice of air dispersion modeling has changed dramatically in recent years, in large part due to new EPA regulations. Current with the EPA's 40 CFR Part 51, this book serves as a complete reference to both the science and contemporary practice of air dispersion modeling. Throughout the book, author Alex De Visscher guides readers through complex calculations, equation by equation, helping them understand precisely how air dispersion models work, including such popular models as the EPA's AERMOD and CALPUFF. Air Dispersion Modeling begins with a primer that enables readers to quickly grasp basic principles by developing their own air dispersion model. Next, the book offers everything readers need to work with air dispersion models and accurately interpret their results, including: Full chapter dedicated to the meteorological basis of air dispersion Examples throughout the book illustrating how theory translates into practice Extensive discussions of Gaussian, Lagrangian, and Eulerian air dispersion modeling Detailed descriptions of the AERMOD and CALPUFF model formulations This book also includes access to a website with Microsoft Excel and MATLAB files that contain examples of air dispersion model calculations. Readers can work with these examples to perform their own calculations. With its comprehensive and up-to-date coverage, Air Dispersion Modeling is recommended for environmental engineers and meteorologists who need to perform and evaluate environmental impact assessments. The book's many examples and step-by-step instructions also make it ideal as a textbook for students in the fields of environmental engineering, meteorology, chemical engineering, and environmental sciences.
Finishing this book is giving me a mixture of relief, satisfaction and frus tration. Relief, for the completion of a project that has taken too many of my evenings and weekends and that, in the last several months, has become almost an obsession. Satisfaction, for the optimistic feeling that this book, in spite of its many shortcomings and imbalances, will be of some help to the air pollution scientific community. Frustration, for the impossibility of incorporating newly available material that would require another major review of several key chap ters - an effort that is currently beyond my energies but not beyond my desires. The first canovaccio of this book came out in 1980 when I was invited by Computational Mechanics in the United Kingdom to give my first Air Pollution Modeling course. The course material, in the form of transparencies, expanded, year after year, thus providing a growing working basis. In 1985, the ECC Joint Research Center in Ispra, Italy, asked me to prepare a critical survey of mathe matical models of atmospheric pollution, transport and deposition. This support gave me the opportunity to prepare a sort of "first draft" of the book, which I expanded in the following years.
Urban Climates is the first full synthesis of modern scientific and applied research on urban climates. The book begins with an outline of what constitutes an urban ecosystem. It develops a comprehensive terminology for the subject using scale and surface classification as key constructs. It explains the physical principles governing the creation of distinct urban climates, such as airflow around buildings, the heat island, precipitation modification and air pollution, and it then illustrates how this knowledge can be applied to moderate the undesirable consequences of urban development and help create more sustainable and resilient cities. With urban climate science now a fully-fledged field, this timely book fulfills the need to bring together the disparate parts of climate research on cities into a coherent framework. It is an ideal resource for students and researchers in fields such as climatology, urban hydrology, air quality, environmental engineering and urban design.
"The combination of scientific and institutional integrity represented by this book is unusual. It should be a model for future endeavors to help quantify environmental risk as a basis for good decisionmaking." â€"William D. Ruckelshaus, from the foreword. This volume, prepared under the auspices of the Health Effects Institute, an independent research organization created and funded jointly by the Environmental Protection Agency and the automobile industry, brings together experts on atmospheric exposure and on the biological effects of toxic substances to examine what is knownâ€"and not knownâ€"about the human health risks of automotive emissions.
In the debate over pollution control, the price of pollution is a key issue. But which is more costly: clean up or prevention? From regulations to technology selection to equipment design, Air Pollution Control Technology Handbook serves as a single source of information on commonly used air pollution control technology. It covers environmental regulations and their history, process design, the cost of air pollution control equipment, and methods of designing equipment for control of gaseous pollutants and particulate matter. This book covers how to: Review alternative design methods Select methods for control Evaluate the costs of control equipment Examine equipment proposals from vendors With its comprehensive coverage of air pollution control processes, the Air Pollution Control Technology Handbook is a detailed reference for the practicing engineer who prepares the basic process engineering and cost estimation required for the design of an air pollution control system. It discusses the topics in depth so that you can apply the methods and equations presented and proceed with equipment design.