Download Free Fundamentals And Supercapacitor Applications Of 2d Materials Book in PDF and EPUB Free Download. You can read online Fundamentals And Supercapacitor Applications Of 2d Materials and write the review.

Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. - Explores recent developments and looks at the importance of 2D materials in energy storage technologies - Presents both the theoretical and DFT related studies - Discusses the impact on performance of various operating conditions - Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive
Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. - Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system - Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more - Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials
Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices provides a deep insight into energy storage systems and their applications. The first two chapters cover the detailed background, fundamental charge storage mechanism and the various types of supercapacitor. The third chapter give details about the hybrid device (Supercapattery) which comprises of battery and capacitive electrode. The main advantages of Supercapattery over batteries and supercapacitor are discussed in this chapter. The preceding three chapters cover the electrode materials used for supercapattery. The electrolyte is a major part that significantly contributes to the performance of the device. Therefore, different kinds of electrolytes and their suitability are discussed in chapter 6 and 7. The book concludes with a look at the potential applications of supercapattery, challenges and future prospective. This book is beneficial for research scientists, engineers and students who are interested in the latest developments and fundamentals of energy storage mechanism and clarifies the misleading concepts in this field. Presents the three classes of energy storage devices and clarifies the difference between between pseudocapacitor and battery grade material Covers the synthesis strategies to enhance the overall performance of the supercapacitor device (including power density) Explains the energy storage mechanism based on the fundamental concept of physics and electrochemistry
Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices provides a detailed overview of advances and challenges in the development of 2D materials for use in energy storage devices. It offers deep insight into the synthesis, characterization, and application of different 2D materials and their heterostructures in a variety of energy storage devices, focusing on new phenomena and enhanced electrochemistry. This book: Introduces 2D materials, synthesis methods, and characterization techniques Discusses application in a wide range of batteries and supercapacitors Offers perspectives on future investigations necessary to overcome existing challenges This comprehensive reference is written to guide researchers and engineers working to advance the technology of energy-efficient energy storage devices.
One-stop reference explaining the manufacturing, design, and many applications of MXenes in an easy-to-understand linear format MXenes is a one-stop reference on MXenes, a promising new class of 2D materials, discussing the routes of functionalization and modifications towards high performance materials and providing broad coverage of lab synthesis methods. To aid in reader comprehension, this text presents the topic in a linear fashion, starting with an introduction to MXenes and ending with a comparison of MXenes to other similar 2D materials, discussing limitations, advantages, future perspectives, and challenges of both MXenes and MXene-based materials. The text covers up-to-date research in the field with a strong focus on novel findings in various devices along with core technological advancements that have been made in recent years. MXenes discusses sample topics such as: Properties of MXenes, including strong hydrophilicity, exceptional conductivity, high elastic mechanical strength, large surface-to-volume ratio, and chemical stability Applications of MXenes in energy storage, optoelectronics, spintronics, biomedicine, electro-catalysis, photocatalysis, membrane separation, supercapacitors, and batteries Performance factors that can hinder the efficacy of MXenes, including aggregation, difficulty obtaining a single layer, restacking, and oxidation of MXene nanosheets State-of-the-art progress in the field of gas sensors and electrochemical biosensors for the detection of various biomolecules, pharmaceutical drugs, and environmental pollutants Containing everything readers need to know about this exciting new class of 2D materials, MXenes is an essential reference for professionals working in advanced materials science, flexible electronics, nanoelectronics, and the energy industry, along with chemists, material scientists, and engineers in nanoscience and nanotechnology.
The book discusses the materials, devices, and methodologies that can be used for energy harvesting including advanced materials, devices, and systems. It describes synthesis and fabrication details of energy storage materials. It explains use of high-energy density thin films for future power systems, flexible and biodegradable energy storage devices, fuel cells and supercapacitors, nanogenerators for self-powered systems, and innovative energy harvesting methodologies. Features: Covers all relevant topics in energy harvesting research and focuses on the current state-of-the-art techniques and materials for this application. Showcases the true potential of the nature in energy harvesting industry by discussing various harvesting mechanisms based on renewable and sustainable energy sources. Explains the recent trends in flexible and wearable energy storage devices that are currently being used in IoT-based smart devices. Overviews of the state-of-the-art research performed on design and development of energy harvesting devices. Highlights the interdisciplinary research efforts needed in energy harvesting and storage devices to transform conceptual ideas to working prototypes. This book is aimed at graduate students and researchers in emerging materials, energy engineering, including harvesting and storage.
Smart Supercapacitors: Fundamentals, Structures and Applications presents current research and technology surrounding smart supercapacitors, also exploring their rapidly emerging characteristics and future potential advancements. The book begins by describing the basics and fundamentals related to supercapacitors and their applicability as smart and next generation energy storing devices. Subsequent sections discuss electrode materials, their fabrication, specific designing techniques, and a review of the application and commercialization of this technology. This book will appeal to researchers and engineers from both academia and industry, making it a vital resource to help them revolutionize modern supercapacitors. - Explores the potential applications of supercapacitors - Covers the entire spectrum of new advances and recent trends on research in supercapacitors - Explains reliability, safety, economics and market trends surrounding the use of supercapacitors from a sustainable perspective
MXenes and their Composites: Synthesis, Properties and Potential Applications presents a state of the art overview of the recent developments on the synthesis, functionalization, properties and emerging applications of two-dimensional (2D) MXenes and their composites.The book systematically describes the state-of-the-art knowledge and fundamentals of MXene synthesis, structure, surface chemistry and functionalization. The book also discusses the unique electronic, optical, mechanical and topological properties of MXenes. Besides, this book covers the various emerging applications of MXenes and their composites across different fields such as energy storage and conversion, gas sensing and biosensing, rechargeable lithium and sodium-ion batteries, lithium-sulphur and multivalent batteries, electromagnetic interference shielding, hybrid capacitors and supercapacitors, hydrogen storage, catalysis and photoelectrocatalysis, gas separation and water desalination, environmental remediation and medical and biomedical applications. All these applications have been efficiently discussed in the specific chapters and in each case, the processing of MXene composites has also been discussed.This book will be an excellent reference for scientists and engineers across various disciplines and industries working in the field of highly promising 2D MXenes and their composites. The book will also act as a guide for academic researchers, material scientists, and advanced students in investigating the new applications of 2D MXenes based materials. - Covers fundamentals of technologically important MAX phases, MXene derivatives, MXene synthesis methods, intercalation and delamination strategies, surface functionalization, fundamental characteristics and properties - Demonstrates major application areas of MXenes, including catalytic, energy storage and energy generation, flexible electronics, EMI shielding, sensors and biosensors, medical and biomedical, gas separation and water desalination - Presents a detailed discussion on the processing and performance of various MXenes towards different applications
This is the very first book on the highly promising topic of MXenes; focusing on their fundamental characteristics and properties, fabrication techniques and applications. MXenes are two-dimensional materials consisting of few atoms thick layers of transition metal carbides or nitrides. These are characterized by high electrical conductivity, good hydrophilicity, chemical stability, and ultrathin 2D sheet-like morphology. Applications in the energy, environmental, biomedical and electronic industries include catalysis, membrane separation, supercapacitors, hybrid-ion capacitors, batteries, flexible electronics, hydrogen storage, nanoelectronics, and sensors.
This reference text provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion. It covers a wide range of 2D materials and energy applications, including 2D heterostructures for hydrogen storage applications, cathode and anode materials for lithium and sodium-ion batteries, ultrafast lithium and sodium-ion batteries, MXenes for improved electrochemical applications and MXenes as solid-state asymmetric supercapacitors. 2D Materials for Energy Storage and Conversion is an invaluable reference for researchers and graduate students working with 2D materials for energy storage and conversion in the fields of nanotechnology, electrochemistry, materials chemistry, materials engineering and chemical engineering. Key Features: Provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion technologies Covers the most promising candidates for radically advanced energy storage Covers 2D heterostructures and provides a holistic view of the subject Includes 2D materials beyond graphene, defects engineering, and the main challenges in the field