Download Free Functional Polymers In Sensors And Actuators Book in PDF and EPUB Free Download. You can read online Functional Polymers In Sensors And Actuators and write the review.

Hydrogels are a fascinating class of polymers which show an immense ability of swelling under the influence of temperature, pH value or concentrations of different species in aqueous solutions. The volume change can amount up to several hundred percent. This unique behaviour is already used in such applications like disposable diapers, contact lenses or drug-delivery systems. The ability to perform mechanical work has been shifted the technical interest more and more towards sensors and actuators exploiting the thermo-chemo-mechano-electrical coupling within hydrogels. The accuracy requirements for such devices are much more demanding than for previous applications. Therefore, a deep knowledge of both the material and the functional properties of hydrogel sensors and actuators is needed. The monograph describes state of the art and recent developments for these materials in sensor and actuator technology.
The book exhaustively covers the various polymers that are used for sensors and actuators from the perspective of organic chemistry. The field of polymeric sensors and actuators is developing very rapidly as newly derived polymer materials are suitable for sensor technology. This book uniquely and comprehensively covers the various polymers that are used for sensors and actuators. The author has researched both scientific papers and patents to include all the recent discoveries and applications. Since many chemists may not be very familiar with the physical background as well as how sensors operate, Polymeric Sensors and Actuators includes a general chapter dealing with the overall physics and basic principles of sensors. Complementary chapters on their methods of fabrication as well as the processing of data are included. The actuators sections examine the fields of applications, special designs, and materials. The final chapter is dedicated to liquid crystal displays. The book concludes with four extensive indices including one special one on analytes to allow the practitioner to easily use the text. This comprehensive text examines the following sensor types: Humidity Sensors Biosensors Mechanical Sensors Optical Sensors Surface Plasmon Resonance Test Strips Microelectromechanical (MEMS) Sensors Piezoelectric Sensors Acoustic Wave Sensors Electronic Nose Switchable Polymers
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. - Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations - Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components - Analyzes the behavior of carbon nanotube-based composites in different conditions
This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.
Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites. - Provides thorough coverage of the latest pioneering research in the field of polymer-based smart composites - Offers an applications-oriented approach, enabling the reader to understand state-of-the-art optical, sensor and energy applications - Includes an in-depth introductory section, covering important aspects such as structure-property relationships and the role of conjugated polymers
Adaptive polymers include those which are responsive to different stimuli — namely physical, mechanical, chemical and biological — with controlled and/or predicable behavior. Many technological breakthroughs and scientific advances have been made in the last few decades and this volume aims to cover the most up-to-date studies and achievements in some adaptive polymers, in terms of principles of adaptiveness, properties, structure design and characterization with an emphasis on their applications, particularly in textiles, skin care, medicine and other related areas. Some versatile functional polymers, such as Chitosan, cylodextrin and dendrimer,and hyper-branched polymers are also introduced in order to provide a source for people in different professions when searching for knowledge and inspiration in the field of adaptive and functional polymers. One of the key features of this book is the fact that it is multi-disciplinary in nature, and so accessible to a wide variety of readers.
Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.
This new work, Functional Polymeric Composites: Macro to Nanoscales, focuses on new challenges, findings, opportunities, and applications in the area of polymer composites. The chapters, written prominent researchers from academia, industry, and research institutes from around the world, present contemporary research and developments on advanced polymeric materials, including polymer blends, polymer electrolytes, bio-based polymer, polymer nanocomposites, etc. Several chapters also cover the applications of the polymeric systems in current industry development and synthesis and characterization of the products.
Advanced Functional Polymers for Biomedical Applications presents novel techniques for the preparation and characterization of functionalized polymers, enabling researchers, scientists and engineers to understand and utilize their enhanced functionality in a range of cutting-edge biomedical applications. - Provides systematic coverage of the major types of functional polymers, discussing their properties, preparation techniques and potential applications - Presents new synthetic approaches alongside the very latest polymer processing and characterization methods - Unlocks the potential of functional polymers to support ground-breaking techniques for drug and gene delivery, diagnostics, tissue engineering and regenerative medicine
This book discusses the fundamental of bending actuation with a focus on ionic metal composites. It describes the applications of ionic polymer metal composite (IPMC) actuators, from conventional robotic systems to compliant micro robotic systems used to handle the miniature and fragile components during robotic micro assembly. It also presents mathematical modelings of actuators for engineering, biomedical, medical and environmental systems. The fundamental relation of IPMC actuators to the biomimetic systems are also included.