Download Free Functional Equations In Applied Sciences Book in PDF and EPUB Free Download. You can read online Functional Equations In Applied Sciences and write the review.

The book provides the reader with the different types of functional equations that s/he can find in practice, showing, step by step, how they can be solved. A general methodology for solving functional equations is provided in Chapter 2. The different types of functional equations are described and solved in Chapters 3 to 8. Many examples, coming from different fields, as geometry, science, engineering, economics, probability, statistics, etc, help the reader to change his/her mind in order to state problems as functional equations as an alternative to differential equations, and to state new problems in terms of functional equations or systems. An interesting feature of the book is that it deals with functional networks, a powerful generalization of neural networks that allows solving many practical problems. The second part of the book, Chapters 9 to 13, is devoted to the applications of this important paradigm. The book contains many examples and end of chapter exercises, that facilitates the understanding of the concepts and applications. · A general methodology for solving functional equations is provided in Chapter 2. · It deals with functional networks, a powerful generalization of neural networks. · Many examples, coming from different fields, as geometry, science, engineering, economics, probability, statistics, etc, illustrate the concept of functional equation. · Functional equations are presented as a powerful alternative to differential equations. · The book contains end of chapter exercises.
Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.
Recently I taught short courses on functional equations at several universities (Barcelona, Bern, Graz, Hamburg, Milan, Waterloo). My aim was to introduce the most important equations and methods of solution through actual (not artifi cial) applications which were recent and with which I had something to do. Most of them happened to be related to the social or behavioral sciences. All were originally answers to questions posed by specialists in the respective applied fields. Here I give a somewhat extended version of these lectures, with more recent results and applications included. As previous knowledge just the basic facts of calculus and algebra are supposed. Parts where somewhat more (measure theory) is needed and sketches of lengthier calcula tions are set in fine print. I am grateful to Drs. J. Baker (Waterloo, Ont.), W. Forg-Rob (Innsbruck, Austria) and C. Wagner (Knoxville, Tenn.) for critical remarks and to Mrs. Brenda Law for care ful computer-typing of the manuscript (in several versions). A note on numbering of statements and references: The numbering of Lemmata, Propositions, Theorems, Corollaries and (separately) formulae starts anew in each section. If quoted in another section, the section number is added, e.g. (2.10) or Theorem 1.2. References are quoted by the last names of the authors and the last two digits of the year, e.g. Daroczy-Losonczi [671. 1 1. An aggregation theorem for allocation problems. Cauchy equation for single-and multiplace functions. Two extension theorems.
Provides engineers and applied scientists with some selected results of functional equations and their applications, with the intention of changing the way they think about mathematical modelling. Many of the proofs are simplified or omitted, so as not to bore or confuse engineers. Functional equati
This volume provides an accessible and coherent introduction to some of the scientific progress on functional equations on groups in the last two decades. It presents the latest methods of treating the topic and contains new and transparent proofs. Its scope extends from the classical functional equations on the real line to those on groups, in particular, non-abelian groups. This volume presents, in careful detail, a number of illustrative examples like the cosine equation on the Heisenberg group and on the group SL(2, R). Some of the examples are not even seen in existing monographs. Thus, it is an essential source of reference for further investigations.
Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.
This book presents a self-contained and unified introduction to the properties of analytic functions. Based on recent research results, it provides many examples of functional equations to show how analytic solutions can be found.Unlike in other books, analytic functions are treated here as those generated by sequences with positive radii of convergence. By developing operational means for handling sequences, functional equations can then be transformed into recurrence relations or difference equations in a straightforward manner. Their solutions can also be found either by qualitative means or by computation. The subsequent formal power series function can then be asserted as a true solution once convergence is established by various convergence tests and majorization techniques. Functional equations in this book may also be functional differential equations or iterative equations, which are different from the differential equations studied in standard textbooks since composition of known or unknown functions are involved.
The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .
The stability problem for approximate homomorphisms, or the Ulam stability problem, was posed by S. M. Ulam in the year 1941. The solution of this problem for various classes of equations is an expanding area of research. In particular, the pursuit of solutions to the Hyers-Ulam and Hyers-Ulam-Rassias stability problems for sets of functional equations and ineqalities has led to an outpouring of recent research. This volume, dedicated to S. M. Ulam, presents the most recent results on the solution to Ulam stability problems for various classes of functional equations and inequalities. Comprised of invited contributions from notable researchers and experts, this volume presents several important types of functional equations and inequalities and their applications to problems in mathematical analysis, geometry, physics and applied mathematics. "Functional Equations in Mathematical Analysis" is intended for researchers and students in mathematics, physics, and other computational and applied sciences.