Download Free Functional Analysis Holomorphy And Approximation Theory Ii Book in PDF and EPUB Free Download. You can read online Functional Analysis Holomorphy And Approximation Theory Ii and write the review.

Functional Analysis, Holomorphy and Approximation Theory II
Functional Analysis, Holomorphy and Approximation Theory
This book contains papers on complex analysis, function spaces, harmonic analysis, and operators, presented at the International seminar on Functional Analysis, Holomorphy, and Approximation Theory held in 1979. It is addressed to mathematicians and advanced graduate students in mathematics.
This proceedings volume contains papers of research of expository nature, and is addressed to research workers and advanced graduate students in mathematics. Some of the papers are the written and expanded texts of lectures delivered at the conference, whereas others have been included by invitation.
This book contains papers on complex analysis, function spaces, harmonic analysis, and operators, presented at the International seminar on Functional Analysis, Holomorphy, and Approximation Theory held in 1979. It is addressed to mathematicians and advanced graduate students in mathematics.
Infinite dimensional holomorphy is the study of holomorphic or analytic func tions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself ini tially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suit able material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book.
This volume includes a collection of research articles inFunctional Analysis, celebrating the occasion of Manuel Valdivia'ssixtieth birthday. The papers included in the volume are basedon the main lectures presented during the internationalfunctional analysis meeting held in Peñíscola(Valencia, Spain) in October 1990.During his career, Valdiviahas made contributions to a wide variety of areas of FunctionalAnalysis and his work has had a profound impact. A thoroughappreciation of Valdivia's work is presented in J.Horváth's article. In honor of Valdivia's achievements, this volume presents more than twenty-five papers on topics related to his research(Banach spaces, operator ideals, tensor products, Fréchet,(DF) and (LF) spaces, distribution theory, infinite holomorphyetc.). While the majority of papers are research articles, survey articles are also included. The book covers a broad spectrum of interests in today's Functional Analysis and presents new results by leading specialists in the field.
Differential Calculus and Holomorphy
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany