Download Free From Varying Couplings To Fundamental Physics Book in PDF and EPUB Free Download. You can read online From Varying Couplings To Fundamental Physics and write the review.

Nature is characterized by a number of physical laws and fundamental dimensionless couplings. These determine the properties of our physical universe, from the size of atoms, cells and mountains to the ultimate fate of the universe as a whole. Yet it is rather remarkable how little we know about them. The constancy of physical laws is one of the cornerstones of the scientific research method, but for fundamental couplings this is an assumption with no other justification than a historical assumption. There is no 'theory of constants' describing their role in the underlying theories and how they relate to one another or how many of them are truly fundamental. Studying the behaviour of these quantities throughout the history of the universe is an effective way to probe fundamental physics. This explains why the ESA and ESO include varying fundamental constants among their key science drivers for the next generation of facilities. This symposium discussed the state-of-the-art in the field, as well as the key developments anticipated for the coming years.
Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale
Since the use of high-precision/resolution spectroscopy is closely connected to the ability to collect a large number of photons, the scientific domains using this technique benefit tremendously from the use of 8-meter class telescopes and will fully exploit the tremendous gain provided by future Extremely Large Telescopes (ELTs). This volume comprehensively covers the astrophysical and technical aspects of high-precision spectroscopy with an outlook to future developments.
The workshop on The Cosmology of Extra Dimensions and Varying Fundamental Constants, which was part of JENAM 2002, was held at the Physics Department of the University of Porto (FCUP) from the 3rd to the 5th of September 2002. It was regularly attended by about 110 participants, of which 65 were officially registered in the VFC workshop, while the others came from the rest of the JENAM workshops. There were also a few science correspondents from the national and international press. During the 3 days of the scientific programme, 8 Invited Reviews and 30 Oral Communications were presented. The speakers came from 11 different European countries, and also from Argentina, Australia, Canada, Japan and the U.S.A. There were also speakers from six Portuguese research institutions, and nine of the speak ers were Ph.D. students. The contributions are presented in these proceedings in chronological order. The workshop brought together string theorists, particle physicists, theoretical and observational cosmologists, relativists and observational astrophysicists. It was generally agreed that this inter-disciplinarity was the greatest strength of the work shop, since it provided people coming into this very recent topic from the various different backgrounds with an opportunity to understand each other's language and thereby gain a more solid understanding of the overall picture.
This edition contains carefully selected contributions by leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is given to ultrafast laser phenomena, implementations of frequency combs, precision spectroscopy and high resolution metrology. Furthermore, applications of the fundamentals of quantum mechanics are widely covered. This book is dedicated to Nobel prize winner Theodor W. Hänsch on the occasion of his 75th birthday. The contributions are reprinted from a topical collection published in Applied Physics B, 2016. Selected contributions are available open access under a CC BY 4.0 license via link.springer.com. Please see the copyright page for further details.
Many approaches exist for scientific investigations and space research is no exception. The early approach during which each space plasma region within the Sun-Earth system was investigated separately with physics-based tools has now progressed to encompass investigations on coupling between these regions. Ample evidence now exists indicating the dynamic processes in these regions exhibit disturbances over a wide range of scales both in time and space. This new reckoning naturally leads to an emerging perspective of probing these natural phenomena with concepts and tools developed in modern statistical mechanics for physical processes governing the evolution of out-of-equilibrium and complex systems. These new developments have prompted a topical conference on Sun-Earth connection, held on February 9-13, 2004 at Kailua-Kona, Hawaii, USA, with the goal of promoting interactions among scientists practicing the traditional physics-based approach and those utilizing modern statistical techniques. This monograph is a product of this conference, a compilation of thirty-nine articles assembled into seven chapters: (1) multiscale features in complexity dynamics, (2) space storms, (3) magnetospheric substorms, (4) turbulence and magnetic reconnection, (5) modeling and coupling of space phenomena, (6) techniques for multiscale space plasma problems, and (7) present and future multiscale space missions. These articles show a diversity of space phenomena exhibiting scale free characteristics, intermittency, and non-Gaussian distributions of probability density function of fluctuations in the physical parameters of the Sun-Earth system. The scope covers the latest observations, theories, simulations, and techniques on the multiscale nature of Sun-Earth phenomena and underscores the usefulness in cross-disciplinary exchange needed to unravel the underlying physical processes, which may eventually lead to a possible unified description and prediction for space disturbances.* Extensive collection of state-of-the-art papers on multiscale coupling of Sun-Earth Processes* Present and future multiscale space missions* New techniques and models for performing multiscale analysis
The Fourth International Workshop on New Worlds in Astroparticle Physics was the latest in the biennial series, held in Faro, Portugal. The program included both invited and contributed talks. Each of the sessions opened with a pedagogical overview of the current state of the respective field. The following topics were covered: cosmological parameters; neutrino physics and astrophysics; gravitational waves; beyond standard models: strings; cosmic rays: origin, propagation and interaction; matter under extreme conditions; supernovae and dark matter.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
The question of a possible temporal variation of the fundamental constants was raised by Paul Dirac in his "large number hypothesis" in 1937. Today it appears in the context of the search for a unified theory of the fundamental interactions. It touches both fundamental and applied physics, as the postulate of the unalterability of the constants is the foundation for modern metrology. The book presents reviews written by leading experts in the field. Focussing on the question of variations of the fundamental "constants" in time or space, the chapters cover the theoretical framework in which variations are expected and the search for variations of quantities like the fine-structure constant, the electron/proton mass ratio, g-factors of proton and neutron etc. in astrophysical and geophysical observations and in precision experiments with atomic clocks and frequency standards.
Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere. - Describes frontier science and major science around M-I-T coupling, allowing for foundational understanding of this emerging field in space physics - Reviews recent and key findings in the cutting-edge of the science - Discusses open questions and pathways for understanding how the field is evolving