Download Free From Prognostics And Health Systems Management To Predictive Maintenance 2 Book in PDF and EPUB Free Download. You can read online From Prognostics And Health Systems Management To Predictive Maintenance 2 and write the review.

This book is the second volume in a set of books dealing with the evolution of technology, IT and organizational approaches and what this means for industrial equipment. The authors address this increasing complexity in two parts, focusing specifically on the field of Prognostics and Health Management (PHM). Having tackled the PHM cycle in the first volume, the purpose of this book is to tackle the other phases of PHM, including the traceability of data, information and knowledge, and the ability to make decisions accordingly. The book concludes with a summary analysis and perspectives regarding this emerging domain, since without traceability, knowledge and decision, any prediction of the health state of a system cannot be exploited.
This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.
This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.
In the age of digitalization and the fourth industrial revolution, predictive maintenance is becoming increasingly important as a proactive maintenance type. Despite the economic benefits that predictive maintenance generates for companies, its practical application is still in its early stages. This is often due to two prevailing challenges. First, there is a deficiency of knowledge about predictive maintenance and its concrete realization. Second, there is a lack of high quality and rich data of historical machine failures. To increase the representativeness of data, data from several similar machines (i.e. a fleet) should be considered. To foster the effective implementation of predictive maintenance, supportive guidance in the realization of a predictive maintenance project is needed. For this reason, this dissertation presents a process reference model and a development method for fleet prognostics. The process reference model describes a comprehensive and application-independent view of the complete predictive maintenance process. The model is supplemented by the fleet prognostic development method. To address the specific characteristics of the fleet, a systematic process is depicted which provides a means to assess the heterogeneity of the fleet from a data-driven perspective and simplifies the design of an algorithm considering fleet data. Finally, the applicability and value of the research results are demonstrated with three industrial cases
This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.
This book constitutes the refereed proceedings of the 14th International Conference on Metaheuristics, MIC 2022, held in Syracuse, Italy, in July 2022. The 48 full papers together with 17 short papers presented were carefully reviewed and selected from 72 submissions. The papers detail metaheuristic techniques. Chapter “Evaluating the Effects of Chaos in Variable Neighbourhood Search” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This timely Handbook examines the rapidly expanding research area of digital platforms and business ecosystems in the context of manufacturing industries. Chapters analyze core topics such as business model transformation, ecosystem design, and governance, offering an up-to-date overview of crucial research.
A comprehensive guide to the application and processing of condition-based data to produce prognostic estimates of functional health and life. Prognostics and Health Management provides an authoritative guide for an understanding of the rationale and methodologies of a practical approach for improving system reliability using conditioned-based data (CBD) to the monitoring and management of health of systems. This proven approach uses electronic signatures extracted from conditioned-based electrical signals, including those representing physical components, and employs processing methods that include data fusion and transformation, domain transformation, and normalization, canonicalization and signal-level translation to support the determination of predictive diagnostics and prognostics. Written by noted experts in the field, Prognostics and Health Management clearly describes how to extract signatures from conditioned-based data using conditioning methods such as data fusion and transformation, domain transformation, data type transformation and indirect and differential comparison. This important resource: Integrates data collecting, mathematical modelling and reliability prediction in one volume Contains numerical examples and problems with solutions that help with an understanding of the algorithmic elements and processes Presents information from a panel of experts on the topic Follows prognostics based on statistical modelling, reliability modelling and usage modelling methods Written for system engineers working in critical process industries and automotive and aerospace designers, Prognostics and Health Management offers a guide to the application of condition-based data to produce signatures for input to predictive algorithms to produce prognostic estimates of functional health and life.
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.
Prognostics is the science of making predictions of engineering systems. It is part of a suite of techniques that determine whether a system is behaving within nominal operational performance and - if it does not - that determine what is wrong and how long it will take until the system no longer fulfills certain functional requirements. This book presents the latest developments and research findings on the topic of prognostics by the Prognostics Center of Excellence at NASA Ames Research Center. The book is intended to provide a practitioner with an understanding of the foundational concepts as well as practical tools to perform prognostics and health management on different types of engineering systems and in particular to predict remaining useful life.