Download Free From Genome To Therapy Book in PDF and EPUB Free Download. You can read online From Genome To Therapy and write the review.

This important and exciting work brings together a high-calibre group of experts to discuss the practical application of genomic information to the development of drugs. Recent technological advances have led to a rapid acceleration in our ability to gather genetic data. The complete genetic sequences are now known for several organisms and accelerated programmes are in place for sequencing many other genomes, including human. The speed with which complete sequencing can be accomplished will continue to increase as new technologies come online. In principle, the scope for developing new diagnostic techniques and drugs is now greater than at any time in human history, but the pathway from genetic information to usable drug is a long and complex one. This major book covers such subjects as the current state of the art in squencing technology, the applications of these new technologies to sequencing the genomes of various organisms, and the challenge of proteomics. Additional contributions deal with legal and ethical implications of the new uses of genetic data, and functional genomics from the point of view of the pharmaceutical industry.
This is a reference handbook for young researchers exploring gene and cell therapy. Gene therapy could be defined as a set of strategies modifying gene expression or correcting mutant/defective genes through the administration of DNA (or RNA) to cells, in order to treat disease. Important advances like the discovery of RNA interference, the completion of the Human Genome project or the development of induced pluripotent stem cells (iPSc) and the basics of gene therapy are covered. This is a great book for students, teachers, biomedical researchers delving into gene/cell therapy or researchers borrowing skills from this scientific field.
Genome editing is a powerful new tool for making precise alterations to an organism's genetic material. Recent scientific advances have made genome editing more efficient, precise, and flexible than ever before. These advances have spurred an explosion of interest from around the globe in the possible ways in which genome editing can improve human health. The speed at which these technologies are being developed and applied has led many policymakers and stakeholders to express concern about whether appropriate systems are in place to govern these technologies and how and when the public should be engaged in these decisions. Human Genome Editing considers important questions about the human application of genome editing including: balancing potential benefits with unintended risks, governing the use of genome editing, incorporating societal values into clinical applications and policy decisions, and respecting the inevitable differences across nations and cultures that will shape how and whether to use these new technologies. This report proposes criteria for heritable germline editing, provides conclusions on the crucial need for public education and engagement, and presents 7 general principles for the governance of human genome editing.
Translating Gene Therapy to the Clinic, edited by Dr. Jeffrey Laurence and Michael Franklin, follows the recent, much-lauded special issue of Translational Research in emphasizing clinical milestones and critical barriers to further progress in the clinic. This comprehensive text provides a background for understanding the techniques involved in human gene therapy trials, and expands upon the disease-specific situations in which these new approaches currently have the greatest therapeutic application or potential, and those areas most in need of future research. It emphasizes methods, tools, and experimental approaches used by leaders in the field of translational gene therapy. The book promotes cross-disciplinary communication between the sub-specialties of medicine, and remains unified in theme. - Presents impactful and widely supported research across the spectrum of science, method, implementation and clinical application - Offers disease-based coverage from expert clinician-scientists, covering everything from arthritis to congestive heart failure, as it details specific progress and barriers for current translational use - Provides key background information from immune response through genome engineering and gene transfer, relevant information for practicing clinicians contemplating enrolling patients in gene therapy trials
Gene therapy has tremendous potential for the treatment of neurological disorders. There has been substantial progress in the development of gene therapy strategies for neurological disorders over the last two decades. Gene Therapy in Neurological Disorders thoroughly reviews currently available gene therapy tools and presents examples of their application in a variety of neurological diseases. The book begins with general reviews of gene therapy strategies with a focus on neurological disorders. The remainder of the chapters present approaches to specific neurological disorders. Each chapter gives an in-depth introduction to the relevant field before diving into the specific tool or application. The book aims to help investigators, students and research staff better understand the principles of gene therapy and its application in the nervous system. - Provides background information and experimental details of gene therapy tools applied for neuroscience research and neurological disorders - Covers a broad range of gene delivery and regulation tools, therapeutic agents, and target cells, including emerging new technologies such as CRISPR/Cas9 genome editing - Discusses applications of gene therapy tools to neurological disorders including neurodegeneration, muscular dystrophy, trauma and chronic pain, and neoplastic diseases
This second edition of Genetics and Sports expands on topics previously discussed in an attempt to create an integrated and holistic understanding of the field of sports genomics. It is an update on technologies and on the role of genetics in training, performance, injury, and other exercise-related phenotypes. Ethical concerns and the importance of counselling before and after genetic testing are also addressed. It is increasingly important to understand the field of genetics and sports because of the potential to use and misuse information. All exercise scientists, sport and exercise clinicians, athletes, and coaches need to be adequately informed to ensure that genetic information is accurately and properly used. Genetics and Sports is, therefore, highly recommended to all of these groups.
1. Non-viral gene therapy / Sean M. Sullivan -- 2. Adenoviral vectors / Stuart A. Nicklin and Andrew H. Baker -- 3. Retroviral vectors and integration analysis / Cynthia C. Bartholomae [und weitere] -- 4. Lentiviral vectors / Janka Matrai, Marinee K.L. Chuah and Thierry VandenDriessche -- 5. Herpes simplex virus vectors / William F. Goins [und weitere] -- 6. Adeno-Associated Viral (AAV) vectors / Nicholas Muzyczka -- 7. Regulatory RNA in gene therapy / Alfred. S. Lewin -- 8. DNA integrating vectors (Transposon, Integrase) / Lauren E. Woodard and Michele P. Calos -- 9. Homologous recombination and targeted gene modification for gene therapy / Matthew Porteus -- 10. Gene switches for pre-clinical studies in gene therapy / Caroline Le Guiner [und weitere] -- 11. Gene therapy for central nervous system disorders / Deborah Young and Patricia A. Lawlor -- 12. Gene therapy of hemoglobinopathies / Angela E. Rivers and Arun Srivastava -- 13. Gene therapy for primary immunodeficiencies / Aisha Sauer, Barbara Cassani and Alessandro Aiuti -- 14. Gene therapy for hemophilia / David Markusic, Babak Moghimi and Roland Herzog -- 15. Gene therapy for obesity and diabetes / Sergei Zolotukhin and Clive H. Wasserfall -- 16. Gene therapy for Duchenne muscular dystrophy / Takashi Okada and Shin'ichi Takeda -- 17. Cancer gene therapy / Kirsten A.K. Weigel-Van Aken -- 18. Gene therapy for autoimmune disorders / Daniel F. Gaddy, Melanie A. Ruffner and Paul D. Robbins -- 19. Gene therapy for inherited metabolic storage diseases / Cathryn Mah -- 20. Retinal diseases / Shannon E. Boye, Sanford L. Boye and William W. Hauswirth -- 21. A brief guide to gene therapy treatments for pulmonary diseases / Ashley T. Martino, Christian Mueller and Terence R. Flotte -- 22. Cardiovascular disease / Darin J. Falk, Cathryn S. Mah and Barry J. Byrne
Over the past 50 years, scientists have made incredible progress in the application of genetic research to human health care and disease treatment. Innovative tools and techniques, including gene therapy and CRISPR-Cas9 editing, can treat inherited disorders that were previously untreatable, or prevent them from happening in the first place. You can take a DNA test to learn where your ancestors are from. Police officers can use genetic evidence to identify criminals—or innocents. And some doctors are using new medical techniques for unprecedented procedures. Genomics: A Revolution in Health and Disease Discovery delves into the history, science, and ethics behind recent breakthroughs in genetic research. Authors Whitney Stewart and Hans Andersson, MD, present fascinating case studies that show how real people have benefitted from genetic research. Though the genome remains full of mysteries, researchers and doctors are working hard to uncover its secrets and find the best ways to treat patients and cure diseases. The discoveries to come will inform how we target disease treatment, how we understand our health, and how we define our very identities.
I entered the gene therapy field in the mid-1990s, being fascinated by the immense potential of genes as drugs for the treatment of human disease. Since then, I have experienced the ups and downs of this discipline, and tried to contribute with my work and that of my laboratory to the development of innovative approaches to the treatment of cardiovascular disorders. During these years, I have had several opp- tunities to speak on gene therapy at lectures and academic lessons, and have often noticed that the field is very attractive to scientists of all disciplines. However, as yet no comprehensive book on the subject has been published. Indeed, most books in the field are either a collection of gene transfer laboratory protocols or deal with the subject in a rather superficial manner. Hence the idea to write a gene therapy textbook that is broad and comprehensive, but at the same time provides sufficient molecular and clinical detail to be of interest to students, professors, and specialists in the various disciplines that contribute to gene therapy. I have tried to keep the language plain and, whenever possible, non-technical. Since the book is intended to be a textbook in the field of gene therapy in both the basic science and clinical areas, whenever technical descriptions are required, they are provided.
An Introduction to Molecular Medicine and Gene Therapy Edited by Thomas F. Kresina, Ph.D. Gene therapy, or the use of genetic manipulation for disease treatment, is derived from advances in genetics, molecular biology, clinical medicine, and human genomics. Molecular medicine, the application of molecular biological techniques to disease treatment and diagnosis, is derived from the development of human organ transplantation, pharmacotherapy, and elucidation of the human genome. An Introduction to Molecular Medicine and Gene Therapy provides a basis for interpreting new clinical and basic research findings in the areas of cloning, gene transfer, and targeting; the applications of genetic medicine to clinical conditions; ethics and governmental regulations; and the burgeoning fields of genomics, biotechnology, and bioinformatics. By dividing the material into three sections - an introduction to basic science, a review of clinical applications, and a discussion of the evolving issues related to gene therapy and molecular medicine-this comprehensive manual describes the basic approaches to the broad range of actual and potential genetic-based therapies. In addition, An Introduction to Molecular Medicine and Gene Therapy: * Covers new frontiers in gene therapy, animal models, vectors, gene targeting, and ethical/legal considerations * Provides organ-based reviews of current studies in gene therapy for monogenetic, multifactoral or polygenic disorders, and infectious diseases * Includes bold-faced terms, key concepts, summaries, and lists of helpful references by subject in each chapter * Contains appendices on commercial implications and a review of the history of gene therapy This textbook offers a clear, concise writing style, drawing upon the expertise of the authors, all renowned researchers in their respective specialties of molecular medicine. Researchers in genetics and molecular medicine will all find An Introduction to Molecular Medicine and Gene Therapy to be an essential guide to the rapidly evolving field of gene therapy and its applications in molecular medicine.