Download Free Frequency Dependent Sound Speed And Attenuation Measurements In Seafloor Sands From 1 To 400 Khz Book in PDF and EPUB Free Download. You can read online Frequency Dependent Sound Speed And Attenuation Measurements In Seafloor Sands From 1 To 400 Khz and write the review.

This book is a research monograph on high-Frequency Seafloor Acoustics. It is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. It provides a critical evaluation of the data and models pertaining to high-frequency acoustic interaction with the seafloor, which will be of interest to researchers in underwater acoustics and to developers of sonars. Models and data are presented so as to be readily usable, backed up by extensive explanation. Much of the data is new, and the discussion in on two levels: concise descriptions in the main text backed up by extensive technical appendices.
Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. - Provides a complete and up-to-date treatment of all major subjects of underwater acoustics - Presents chapters written by recognized experts in their individual field - Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics - Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples - Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics - Includes a comprehensive list of literature references for each chapter
Sediment Acoustics is Dr. Robert D. Stoll's seminal book addressing Biot Theory for the modeling of acoustic behavior of ocean sediments. The book is written for seismic-acousticians in the geo-exploration, engineering, oceanographic and underwater sound communities. Robert Stoll, a respected leader in marine geoacoustics for more than forty years, added a brief preface and selected bibliography to this 2006 second printing of his book, first published in 1989. Sediment Acoustics provides an excellent introduction to Biot Theory, the physics underlying the model parameters, and the experimentally measurable predictions of theory. The book constitutes a major synthesis for non-specialists: the results of laboratory, in-situ and numerical modeling studies of seismic-acoustic wave propagation, reflection and attenuation in two-phase poro-visco-elastic media. The text draws from Dr. Stoll's then-20+ year study of shallow subsea porosity and permeability and their effects on seismic-acoustics over the 5-1500 Hz band and has much to offer those interested in better understanding of the Biot model. It is written at the graduate literature review level but includes enough tutorial sections and references to be useful as a text for new researchers in seismic modeling, quantitative seismic stratigraphy, offshore marine geotechnique, underwater acoustics and sonar, and ground-interacting aeroacoustics.
This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.
New geophysical techniques (multibeam echo sounding and 3D seismics) have revolutionized high-resolution imaging of the modern seafloor and palaeo-shelf surfaces in Arctic and Antarctic waters, generating vast quantities of data and novel insights into sedimentary architecture and past environmental conditions. The Atlas of Submarine Glacial Landforms is a comprehensive and timely summary of the current state of knowledge of these high-latitude glacier-influenced systems. The Atlas presents over 180 contributions describing, illustrating and discussing the full variability of landforms found on the high-latitude glacier-influenced seafloor, from fjords and continental shelves to the continental slope, rise and deep-sea basins beyond. The distribution and geometry of these submarine landforms provide key information on past ice-sheet extent and the direction and nature of ice flow and dynamics. The papers discuss individual seafloor landforms, landform assemblages and entire landsystems from relatively mild to extreme glacimarine climatic settings and on timescales from the modern margins of tidewater glaciers, through Quaternary examples to ancient glaciations in the Late Ordovician.
A practical guide to the latest techniques to measure sediments, seabed, water and transport mechanisms in estuaries and coastal waters. Covering a broad range of topics, enough background is included to explain how each technology functions. A review of recent fieldwork experiments demonstrates how modern methods apply in real-life scenarios.