Download Free Free Electron Lasers 2003 Book in PDF and EPUB Free Download. You can read online Free Electron Lasers 2003 and write the review.

This book contains the Proceedings of the 25th International Free Electron Laser Conference and the 10th Free Electron Laser Users Workshop, which were held on September 8-12, 2003 in Tsukuba, Ibaraki in Japan.
This book contains the Proceedings of the 24th International Free Electron Laser Conference and the 9th Free Electron Laser Users Workshop, which were held on September 9-13, 2002 at Argonne National Laboratory. Part I has been reprinted from Nucl. Instr. and Meth. A 507 (2003), Nos. 1-2.
The high scienti?c interest in coherent X-ray light sources has stimulated world-wide e?orts in developing X-ray lasers. In this book a particularly promising approach is described, the free-electron laser (FEL), which is p- sued worldwide and holds the promise to deliver ultra-bright X-ray pulses of femtosecond duration. Other types of X-ray lasers are not discussed nor do we try a comparison of the relative virtues and drawbacks of di?erent concepts. The book has an introductory character and is written in the style of a universitytextbookforthemanynewcomerstothe?eldoffree-electronlasers, graduate students as well as accelerator physicists, engineers and technicians; it is not intended to be a scienti?c monograph for the experts in the ?eld. Building on lectures by one of us (J. R.) at the CERN Accelerator School, and motivated by the positive response to a series of seminars on “FEL t- ory for pedestrians”, given by P. S. within the framework of the Academic Training Program at DESY, we have aimed at presenting the theory of the low-gainandthehigh-gainFELinaclearandconcisemathematicallanguage. Particular emphasis is put on explaining and justifying the assumptions and approximations that are needed to obtain the di?erential equations descr- ing the FEL dynamics. Although we have tried our best to be “simple”, the mathematical derivations are certainly not always as simple as one would like them to be. However, we are not aware of any easier approach to the FEL theory. Some of the more involved calculations are put into the appendices.
The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. One of the most important features of a high-gain FEL, the formation of microbunches, is studied at length. The increase of gain length due to beam energy spread, space charge forces, and three-dimensional effects such as betatron oscillations and optical diffraction is analyzed. The mechanism of Self-Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Various methods of FEL seeding by coherent external radiation are introduced, together with experimental results. The world’s first soft X-ray FEL, the user facility FLASH at DESY, is described in some detail to give an impression of the complexity of such an accelerator-based light source. The last chapter is devoted to the new hard X-ray FELs which generate extremely intense radiation in the Angstrøm regime. The appendices contain supplementary material and more involved calculations.
"Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers' summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It explains how to design both an FEL device and the accelerator providing the driving beam. Covering both theoretical and experimental aspects, this book allows researchers to attempt a first design of an FEL device."--Prové de l'editor.
Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays is an introduction to cutting-edge science that is beginning to emerge on state-of-the-art synchrotron radiation facilities and will come to flourish with the x-ray free-electron lasers currently being planned. It is intended for the use by scientists at synchrotron radiation facilities working with the combination of x-rays and lasers and those preparing for the science at x-ray free-electron lasers. In the past decade synchrotron radiation sources have experienced a tremendous increase in their brilliance and other figures of merit. This progress, driven strongly by the scientific applications, is still going on and may actually be accelerating with the advent of x-ray free-electron lasers. As a result, a confluence of x-ray and laser physics is taking place, due to the increasing importance of laser concepts, such as coherence and nonlinear optics to the x-ray community and the importance of x-ray optics to the laser-generation of ultrashort pulses of x-rays.
This book presents a scientific assessment of free-electron-laser technology for naval applications. The charge from the Office of Naval Research was to assess whether the desired performance capabilities are achievable or whether fundamental limitations will prevent them from being realized. The present study identifies the highest-priority scientific and technical issues that must be resolved along the development path to achieve a megawatt-class free-electron laser. In accordance with the charge, the committee considered (and briefly describes) trade-offs between free-electron lasers and other types of lasers and weapon systems to show the advantages free-electron lasers offer over other types of systems for naval applications as well as their drawbacks. The primary advantages of free-electron lasers are associated with their energy delivery at the speed of light, selectable wavelength, and all-electric nature, while the trade-offs for free-electron lasers are their size, complexity, and relative robustness. Also, Despite the significant technical progress made in the development of high-average-power free-electron lasers, difficult technical challenges remain to be addressed in order to advance from present capability to megawatt-class power levels.
This book provides a set of articles reviewing state-of-the art research and recent advancements in the field of photon-matter interaction for micro/nanomaterials synthesis and manipulation of properties of biological and inorganic materials at the atomic level. Photon-based nanoscience and related technologies have created exciting opportunities for the fabrication and characterization of nano(bio)material devices and systems.
This book is the result of more than ten years of research and teaching in the field of quantum electronics. The purpose of the book is to introduce the principles of lasers, starting from elementary notions of quantum mechanics and electromagnetism. Because it is an introductory book, an effort has been made to make it self contained to minimize the need for reference to other works. For the same reason; the references have been limited (whenever possible) either to review papers or to papers of seminal importance. The organization of the book is based on the fact that a laser can be thought of as consisting of three elements: (i) an active material, (ii) a pumping system, and (iii) a suitable resonator. Ac cordingly, after an introductory chapter, the next three chapters deal, respectively, with the interaction of radiation with matter, pumping processes, and the theory of passive optical resonators.