Download Free Frankia Symbioses Book in PDF and EPUB Free Download. You can read online Frankia Symbioses and write the review.

Five years have now passed since the first symposium on frankiae was held at Harvard Forest, Petersham, Massachusetts, USA and the inauguration of the term actinorhiza. Many advances have been made during these five years in our understanding of the actinorhizal symbioses. Evidence for this was provided by the papers presented at the Wageningen Workshop on Frankia symbioses, held in Wageningen at the Department of Microbiology of the Agricultural University. Most of these papers are now published in this volume of PLANT AND SOIL. We kindly acknowledge the assistance of Anton Houwers, editor of the journal, in planning, reviewing and publishing these studies. Although the papers presented at Wageningen described the active research areas, they also illuminated those aspects of these symbioses which remain beyond our understanding. Primary among the areas of our ignorance is the concept of species within the bacterial symbiont, Frankia. At present groupings of bacterial strains are based on cell chemistry, physiology, serology, DNA homology and symbiotic capa bilities (cross-inoculation). When these classification schemes are merged no clear species framework is obtained. Undoubtedly part of the difficulty is due to a lack of strains for analysis. Currently bacterial strains from only half of the actinorhizal symbioses known to exist, have been isolated and studied in pure culture. We must postpone there fore any comprehensive taxonomic classification until a larger majority of the symbioses are represented. Another research area wherein our understanding is insufficient is host-symbiont interaction.
Proceedings of the 12th meeting on Frankia and actinorhizal Plants
The Biology of Frankia and Actinorhizal Plants provides a comprehensive review of Frankia and the actinorhizal plants. It reviews the state of knowledge on all aspects from molecular genetics through ecology to practical applications; describes methods used in research and practical applications; and is a guide to the literature. The book begins with overviews of Frankia and the actinorhizal plants, and developments in the field prior to the first confirmed isolation of Frankia. Next is a series of authoritative chapters on the biology of Frankia, the symbiosis, and actinorhizal plants. Although methods used in research and in practical applications are included throughout the book, they are given special emphasis in the middle section. The final section of the book concerns the ecology and current and potential uses of actinorhizal plants in both the temperate regions and the tropics. This work is intended as a reference text and handbook of methods for a wide audience including established workers and students of Frankia and actinorhizal plants, specialists and students in other areas of nitrogen fixation (including the Rhizobium-legume symbiosis), soil microbiologists, plant physiologists, ecologists, general biologists, foresters, specialists in land reclamation, and managers requiring an authoritative overview of this rapidly developing field.
For researchers and graduates with any interest in plant or soil sciences, this fascinating study will be a godsend – it’s the complete state of the art with regard to actinorhizal symbioses. The self-contained sixth volume of a comprehensive series on nitrogen fixation, it includes chapters that deal with all aspects of this symbiosis between actinorhizal plants and nitrogen-fixing bacteria. It also contains information both about symbionts and their ecological role and use. Other chapters tackle the global distribution of different actinorhizal plants and their microsymbionts and how this impacts the question of co-evolution of the micro- and macrosymbionts as well as comparing the actinorhizal and leguminous symbioses. No other book provides the up-to-date and in-depth coverage of this volume.
This book presents an introductory overview of Actinobacteria with three main divisions: taxonomic principles, bioprospecting, and agriculture and industrial utility, which covers isolation, cultivation methods, and identification of Actinobacteria and production and biotechnological potential of antibacterial compounds and enzymes from Actinobacteria. Moreover, this book also provides a comprehensive account on plant growth-promoting (PGP) and pollutant degrading ability of Actinobacteria and the exploitation of Actinobacteria as ecofriendly nanofactories for biosynthesis of nanoparticles, such as gold and silver. This book will be beneficial for the graduate students, teachers, researchers, biotechnologists, and other professionals, who are interested to fortify and expand their knowledge about Actinobacteria in the field of Microbiology, Biotechnology, Biomedical Science, Plant Science, Agriculture, Plant pathology, Environmental Science, etc.
Diazotrophic bacteria convert atmospheric nitrogen to plant-useable form and this input of nitrogen through biological fixation is of great agronomic importance. The contributions presented in this volume relate to free-living nitrogen fixers and the diazotrophs associated with plants. Symbiotic association of Frankia with non-legumes and cyanobacterial associations are also discussed. Research topics covered in this volume include the biochemistry and genetics of diazotrophs, recent developments in improvement of plant-microbe interactions and their molecular basis, the use of molecular probes in taxonomy and ecology of diazotrophs and reports on field applications, agronomic importance and improvement in methodologies for assessing their contribution to plants. This book provides valuable information not only for researchers working in the field of biological nitrogen fixation but also for biochemistry, molecular biologists, microbiologists and agronomists.
Phylogenetic classification of nitrogen-fixing organisms. Physiology of nitrogen fixation in free-living heterotrophs. Nitrogen fixation by photosynthetic bacteria. Nitrogen fixation in cyanobacteria. Nitrogen fixation by methanogenic bacteria. Associative nitrogen-fixing bacteria. Actinorhizal symbioses. Ecology of bradyrhizobium and rhizobium. The rhizobium infection process. Physiology of nitrogen-fixing legume nodules: compartments, and functions. Hydrogen cycling in symbiotic bacteria. Evolution of nitrogen-fixing symbioses. The rhizobium symbiosis of the nonlegume parasponia. Genetic analysis of rhizobium nodulation. Nodulins in root nodule development. Plant genetics of symbiotic nitrogen fixation. Molecular genetics of bradyrhizobium symbioses. The enzymology of molybdenum-dependent nitrogen fixation. Alternative nitrogen fixation systems. Biochemical genetics of nitrogenase. Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. Isolated iron-molybdenum cofactor of nitrogenase.
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.