Download Free Fram The Functional Resonance Analysis Method Book in PDF and EPUB Free Download. You can read online Fram The Functional Resonance Analysis Method and write the review.

There has not yet been a comprehensive method that goes behind 'human error' and beyond the failure concept, and various complicated accidents have accentuated the need for it. The Functional Resonance Analysis Method (FRAM) fulfils that need. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, and understand both why things sometimes go wrong but also why they normally succeed.
Resilience engineering has consistently argued that safety is more than the absence of failures. Since the first book was published in 2006, several book chapters and papers have demonstrated the advantage in going behind 'human error' and beyond the failure concept, just as a number of serious accidents have accentuated the need for it. But there has not yet been a comprehensive method for doing so; the Functional Resonance Analysis Method (FRAM) fulfils that need. Whereas commonly used methods explain events by interpreting them in terms of an already existing model, the FRAM is used to model the functions that are needed for everyday performance to succeed. This model can then be used to explain specific events, by showing how functions can be coupled and how the variability of everyday performance sometimes may lead to unexpected and out-of-scale outcomes - either good or bad. The FRAM is based on four principles: equivalence of failures and successes, approximate adjustments, emergence, and functional resonance. As the FRAM is a method rather than a model, it makes no assumptions about how the system under investigation is structured or organised, nor about possible causes and cause-effect relations. Instead of looking for failures and malfunctions, the FRAM explains outcomes in terms of how functions become coupled and how everyday performance variability may resonate. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, to understand why things sometimes go wrong but also why they normally succeed.
Safety has traditionally been defined as a condition where the number of adverse outcomes was as low as possible (Safety-I). From a Safety-I perspective, the purpose of safety management is to make sure that the number of accidents and incidents is kept as low as possible, or as low as is reasonably practicable. This means that safety management must start from the manifestations of the absence of safety and that - paradoxically - safety is measured by counting the number of cases where it fails rather than by the number of cases where it succeeds. This unavoidably leads to a reactive approach based on responding to what goes wrong or what is identified as a risk - as something that could go wrong. Focusing on what goes right, rather than on what goes wrong, changes the definition of safety from ’avoiding that something goes wrong’ to ’ensuring that everything goes right’. More precisely, Safety-II is the ability to succeed under varying conditions, so that the number of intended and acceptable outcomes is as high as possible. From a Safety-II perspective, the purpose of safety management is to ensure that as much as possible goes right, in the sense that everyday work achieves its objectives. This means that safety is managed by what it achieves (successes, things that go right), and that likewise it is measured by counting the number of cases where things go right. In order to do this, safety management cannot only be reactive, it must also be proactive. But it must be proactive with regard to how actions succeed, to everyday acceptable performance, rather than with regard to how they can fail, as traditional risk analysis does. This book analyses and explains the principles behind both approaches and uses this to consider the past and future of safety management practices. The analysis makes use of common examples and cases from domains such as aviation, nuclear power production, process management and health care. The final chapters explain the theoret
For Resilience Engineering, 'failure' is the result of the adaptations necessary to cope with the complexity of the real world, rather than a malfunction. Human performance must continually adjust to current conditions and, because resources and time are finite, such adjustments are always approximate. Featuring contributions from leading international figures in human factors and safety, Resilience Engineering provides thought-provoking insights into system safety as an aggregate of its various components - subsystems, software, organizations, human behaviours - and the way in which they interact.
Accidents are preventable, but only if they are correctly described and understood. Since the mid-1980s accidents have come to be seen as the consequence of complex interactions rather than simple threads of causes and effects. Yet progress in accident models has not been matched by advances in methods. The author's work in several fields (aviation, power production, traffic safety, healthcare) made it clear that there is a practical need for constructive methods and this book presents the experiences and the state-of-the-art. The focus of the book is on accident prevention rather than accident analysis and unlike other books, has a proactive rather than reactive approach. The emphasis on design rather than analysis is a trend also found in other fields. Features of the book include: -A classification of barrier functions and barrier systems that will enable the reader to appreciate the diversity of barriers and to make informed decisions for system changes. -A perspective on how the understanding of accidents (the accident model) largely determines how the analysis is done and what can be achieved. The book critically assesses three types of accident models (sequential, epidemiological, systemic) and compares their strengths and weaknesses. -A specific accident model that captures the full complexity of systemic accidents. One consequence is that accidents can be prevented through a combination of performance monitoring and barrier functions, rather than through the elimination or encapsulation of causes. -A clearly described methodology for barrier analysis and accident prevention. Written in an accessible style, Barriers and Accident Prevention is designed to provide a stimulating and practical guide for industry professionals familiar with the general ideas of accidents and human error. The book is directed at those involved with accident analysis and system safety, such as managers of safety departments, risk and safety consultants, human factors professionals, and accident investigators. It is applicable to all major application areas such as aviation, ground transportation, maritime, process industries, healthcare and hospitals, communication systems, and service providers.
There has not yet been a comprehensive method that goes behind 'human error' and beyond the failure concept, and various complicated accidents have accentuated the need for it. The Functional Resonance Analysis Method (FRAM) fulfils that need. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, and understand both why things sometimes go wrong but also why they normally succeed.
These proceedings document the various presentations at the Fourth Resilience Engineering Symposium held on June 8-10, 2011, in Sophia-Antipolis, France. The Symposium gathered participants from five continents and provided them with a forum to exchange experiences and problems, and to learn about Resilience Engineering from the latest scientific achievements to recent practical applications. The First Resilience Engineering Symposium was held in Söderköping, Sweden, on October 25-29 2004. The Second Resilience Engineering Symposium was held in Juan-les-Pins, France, on November 8-10 2006, The Third Resilience Engineering Symposium was held in Juan-les-Pins, France, on October 28-30 2008. Since the first Symposium, resilience engineering has fast become recognised as a valuable complement to the established approaches to safety. Both industry and academia have recognised that resilience engineering offers valuable conceptual and practical basis that can be used to attack the problems of interconnectedness and intractability of complex socio-technical systems. The concepts and principles of resilience engineering have been tested and refined by applications in such fields as air traffic management, offshore production, patient safety, and commercial fishing. Continued work has also made it clear that resilience is neither limited to handling threats and disturbances, nor confined to situations where something can go wrong. Today, resilience is understood as the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. This definition emphasizes the ability to continue functioning, rather than simply to react and recover from disturbances and the ability to deal with diverse conditions of functioning, expected as well as unexpected. For anyone who is interested in learning more about Resilience Engineering, the books published in the Ashgate Studies in Resilience Engineering provide an excellent starting point. Another sign that Resilience Engineering is coming of age is the establishment of the Resilience Engineering Association. The goal of this association is to provide a forum for coordination and exchange of experiences, by bringing together researchers and professionals working in the Resilience Engineering domain and organisations applying or willing to apply Resilience Engineering principles in their...
The second edition of a bestseller, Safety Differently: Human Factors for a New Era is a complete update of Ten Questions About Human Error: A New View of Human Factors and System Safety. Today, the unrelenting pace of technology change and growth of complexity calls for a different kind of safety thinking. Automation and new technologies have resu
Safety-I is defined as the freedom from unacceptable harm. The purpose of traditional safety management is therefore to find ways to ensure this ‘freedom’. But as socio-technical systems steadily have become larger and less tractable, this has become harder to do. Resilience engineering pointed out from the very beginning that resilient performance - an organisation’s ability to function as required under expected and unexpected conditions alike – required more than the prevention of incidents and accidents. This developed into a new interpretation of safety (Safety-II) and consequently a new form of safety management. Safety-II changes safety management from protective safety and a focus on how things can go wrong, to productive safety and a focus on how things can and do go well. For Safety-II, the aim is not just the elimination of hazards and the prevention of failures and malfunctions but also how best to develop an organisation’s potentials for resilient performance – the way it responds, monitors, learns, and anticipates. That requires models and methods that go beyond the Safety-I toolbox. This book introduces a comprehensive approach for the management of Safety-II, called the Resilience Assessment Grid (RAG). It explains the principles of the RAG and how it can be used to develop the resilience potentials. The RAG provides four sets of diagnostic and formative questions that can be tailored to any organisation. The questions are based on the principles of resilience engineering and backed by practical experience from several domains. Safety-II in Practice is for both the safety professional and academic reader. For the professional, it presents a workable method (RAG) for the management of Safety-II, with a proven track record. For academic and student readers, the book is a concise and practical presentation of resilience engineering.
Exciting new developments in risk assessment and management Risk assessment and management is fundamentally founded on the knowledge available on the system or process under consideration. While this may be self-evident to the laymen, thought leaders within the risk community have come to recognize and emphasize the need to explicitly incorporate knowledge (K) in a systematic, rigorous, and transparent framework for describing and modeling risk. Featuring contributions by an international team of researchers and respected practitioners in the field, this book explores the latest developments in the ongoing effort to use risk assessment as a means for characterizing knowledge and/or lack of knowledge about a system or process of interest. By offering a fresh perspective on risk assessment and management, the book represents a significant contribution to the development of a sturdier foundation for the practice of risk assessment and for risk-informed decision making. How should K be described and evaluated in risk assessment? How can it be reflected and taken into account in formulating risk management strategies? With the help of numerous case studies and real-world examples, this book answers these and other critical questions at the heart of modern risk assessment, while identifying many practical challenges associated with this explicit framework. This book, written by international scholars and leaders in the field, and edited to make coverage both conceptually advanced and highly accessible: Offers a systematic, rigorous and transparent perspective and framework on risk assessment and management, explicitly strengthening the links between knowledge and risk Clearly and concisely introduces the key risk concepts at the foundation of risk assessment and management Features numerous cases and real-world examples, many of which focused on various engineering applications across an array of industries Knowledge of Risk Assessment and Management is a must-read for risk assessment and management professionals, as well as graduate students, researchers and educators in the field. It is also of interest to policy makers and business people who are eager to gain a better understanding of the foundations and boundaries of risk assessment, and how its outcomes should be used for decision-making.