Download Free Fragility Analysis Of Water Supply Systems Book in PDF and EPUB Free Download. You can read online Fragility Analysis Of Water Supply Systems and write the review.

The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.
Urban Water Distribution Networks: Assessing Systems Vulnerabilities and Risks provides a methodology for a system-wide assessment of water distribution networks (WDN) based on component analysis, network topology and, most importantly, the effects of a network's past performance on its seismic and/or non-seismic reliability. Water distribution networks engineers and system designers face multiple operational issues in delivering safe and clean potable water to their customers. - Includes vulnerability assessment methods for water distribution pipes - Discusses topological aspects and their effects on network vulnerability - Explores analytical and numerical modeling methods for finding and analyzing systems vulnerabilities in water distribution networks - Features real world case studies of networks under continuous and intermittent water supply operations
SYNER-G, a multidisciplinary effort funded by the European Union, allowed the development of an innovative methodological framework for the assessment of physical as well as socio-economic seismic vulnerability and risk at urban and regional level. The results of SYNER-G are presented in two books both published by Springer, the present and a second one, entitled “SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk: Buildings, Lifelines, Transportation Networks and Critical Facilities”(*), which provides a comprehensive state-of-the-art of the fragility curves, an alternative way to express physical vulnerability of elements at risk. In this second volume of SYNER-G, the focus has been on presenting a unified holistic methodology for assessing vulnerability at systems level considering interactions between elements at risk (physical and non-physical) and between different systems. The proposed methodology and tool encompasses in an integrated fashion all aspects in the chain, from hazard to the vulnerability assessment of components and systems and to the socio-economic impacts of an earthquake, accounting for most relevant uncertainties within an efficient quantitative simulation scheme. It systematically integrates the most advanced fragility functions to assess the vulnerability of physical assets for buildings, utility systems, transportation networks and complex infrastructures such as harbours and hospitals. The increasing impact due to interactions between different components and systems is treated in a comprehensive way, providing specifications for each network and infrastructure. The proposed socio-economic model integrates social vulnerability into the physical systems modelling approaches providing to decision makers with a dynamic platform to capture post disaster emergency issues like shelter demand and health impact decisions. Application examples at city and regional scale have provided the necessary validation of the methodology and are also included in the book. The present volume, with its companion volume on fragility functions, represent a significant step forward in the seismic vulnerability and risk assessment of complex interacting urban and regional systems and infrastructures. These volumes are not only of interest to scientists and engineers but also to the insurance industry, decision makers and practitioners in the sector of civil protection and seismic risk management. (*) Pitilakis K, Crowley E, Kaynia A (eds) (2014) SYNER-G: Typology definition and fragility functions for physical elements at seismic risk, Series: Geotechnical, Geological and Earthquake Engineering 27, ISBN 978-94-007-7872-6, Springer Science+Business Media, Dordrecht.
Fragility functions constitute an emerging tool for the probabilistic seismic risk assessment of buildings, infrastructures and lifeline systems. The work presented in this book is a partial product of a European Union funded research project SYNER-G (FP7 Theme 6: Environment) where existing knowledge has been reviewed in order to extract the most appropriate fragility functions for the vulnerability analysis and loss estimation of the majority of structures and civil works exposed to earthquake hazard. Results of other relevant European projects and international initiatives are also incorporated in the book. In several cases new fragility and vulnerability functions have been developed in order to better represent the specific characteristics of European elements at risk. Several European and non-European institutes and Universities collaborated efficiently to capitalize upon existing knowledge. State-of-the-art methods are described, existing fragility curves are reviewed and, where necessary, new ones are proposed for buildings, lifelines, transportation infrastructures as well as for utilities and critical facilities. Taxonomy and typology definitions are synthesized and the treatment of related uncertainties is discussed. A fragility function manager tool and fragility functions in electronic form are provided on extras.springer.com. Audience The book aims to be a standard reference on the fragility functions to be used for the seismic vulnerability and probabilistic risk assessment of the most important elements at risk. It is of particular interest to earthquake engineers, scientists and researchers working in the field of earthquake risk assessment, as well as the insurance industry, civil protection and emergency management agencies.
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.
In addition to presenting methodology, it shows how to identify accident vulnerability in the two industries. It reviews the causes of the two major nuclear accidents and many fatal accidents in the chemical industry, including Bhopal. Many examples of applications of PSA to both industries are presented."--BOOK JACKET. "Problems are included at the end of many chapters with answers at the back of the book."--Jacket.
The New York Times best-selling book exploring the counterproductive reactions white people have when their assumptions about race are challenged, and how these reactions maintain racial inequality. In this “vital, necessary, and beautiful book” (Michael Eric Dyson), antiracist educator Robin DiAngelo deftly illuminates the phenomenon of white fragility and “allows us to understand racism as a practice not restricted to ‘bad people’ (Claudia Rankine). Referring to the defensive moves that white people make when challenged racially, white fragility is characterized by emotions such as anger, fear, and guilt, and by behaviors including argumentation and silence. These behaviors, in turn, function to reinstate white racial equilibrium and prevent any meaningful cross-racial dialogue. In this in-depth exploration, DiAngelo examines how white fragility develops, how it protects racial inequality, and what we can do to engage more constructively.
Resilient buildings and cities are in the center of common interests in modern academic communities for science and engineering related to built environment. Resilience of buildings and cities against multidisciplinary risks, e.g. earthquakes, strong winds, floods, etc., is strongly related to the sustainability of buildings and cities in which reduction of damage during a disaster and fast recovery from the damage are key issues. The reduction of damage is related to the level of resistance of buildings and the time of recovery is affected by the amount of supply of damaged members, assurance of restoration work, etc. Robustness, redundancy, resourcefulness, and rapidity are four key factors for supporting the full realization of design and construction of resilient buildings and cities. This research topic gathers cutting-edge and innovative research from various aspects, e.g. robustness of buildings and cities against earthquake risk, structural control and base-isolation for controlling damage risks, quantification of resilience measures, structural health monitoring, innovative structural engineering techniques for higher safety of buildings, resilience actions and tools at the urban scale, etc.