Download Free Fracture Nanomechanics Book in PDF and EPUB Free Download. You can read online Fracture Nanomechanics and write the review.

Materials of micro-/nanometer dimensions have aroused remarkable interest, motivated by the diverse utility of unconventional mechanical and electronic properties distinguished from the bulk counterpart and various industrial applications such as electronic/optic devices and MEMS/NEMS. The size of their elements is now, ultimately, approaching nano
The 16th European Conference of Fracture (ECF16) was held in Greece, July, 2006. It focused on all aspects of structural integrity with the objective of improving the safety and performance of engineering structures, components, systems and their associated materials. Emphasis was given to the failure of nanostructured materials and nanostructures including micro- and nano-electromechanical systems (MEMS and NEMS).
Small structures of the micro/nanometer scale, such as electronic/optic devices and MEMS/NEMS have been developed, and the size of their elements now approaches the nano/atomic scale. This book discuses the fracture behavior of nano/atomic elements (nanofilms, nanowires, and so on) and focuses on the initiation and propagation of interface crack and mechanical instability criterion of atomic structures. This covers the fundamentals and the applicability of the top-down (conventional fracture mechanics to nanoscale) and bottom-up (atomic mechanics including ab initio simulation) concepts. New areas, such as multiphysics characteristics of nanoelements, are introduced as well.
Contains the latest research advances in computational nanomechanics in one comprehensive volume Covers computational tools used to simulate and analyse nanostructures Includes contributions from leading researchers Covers of new methodologies/tools applied to computational nanomechanics whilst also giving readers the new findings on carbon-based aggregates (graphene, carbon-nanotubes, nanocomposites) Evaluates the impact of nanoscale phenomena in materials
Nanomechanics for Coatings and Engineering Surfaces: Test Methods, Development Strategies, Modeling Approaches, and Applications provides readers with an array of best practices for nanoindentation measurements as well as related small-scale test methods and how to translate test results into the development of improved coatings. A core theme of the book is explaining to readers exactly how, when, and why the nanomechanical properties of engineered surfaces relate to their wear resistance. The book starts with chapters that introduce the development and importance of nanomechanical testing and linkages between wear resistance and the mechanical properties of coatings before moving into discussions of various experimental methods and techniques, such as nanoindentation, continuous stiffness measurements, nano-scratch methods, high-temperature testing, nano-impact testing, and more. Other sections discuss modeling approaches such as finite element analysis, atomistic and molecular dynamics, and analytical methods. Design strategies and industrial applications are covered next, with a final section looking at trends and future directions. - Provides best practices in nanoindentation measurements and related small-scale test methods - Demonstrates how to use test results to develop improved coatings - Outlines modeling approaches and numerical simulations - Highlights selected applications for metallic nanocomposites, tribological coatings, solid lubricants, and aerospace coatings - Shows future directions for simulation of complex wear scenarios
Nanomechanics of Structures and Materials highlights and compares the advantages and disadvantages of diverse modeling and analysis techniques across a wide spectrum of different nanostructures and nanomaterials. It focuses on the behavior of media with nanostructural features where the classic continuum theory ceases to hold and augmented continuum theories such as nonlocal theory, gradient theory of elasticity, and the surface elasticity model should be adopted. These generalized frameworks, tailored to address the intricate characteristics inherent at the nanoscale level, are discussed in depth, and their application to a variety of different materials and structures, including graphene, shells, arches, nanobeams, carbon nanotubes, porous materials, and more, is covered. Key Features Outlines the advantages and limitations of size-dependent continuum theories and modeling techniques when studying fundamental problems in the nanomechanics of structures and materials Discusses various analytical and numerical tools for identifying nanomechanical defects in structures Explores a diverse array of structures and materials, including graphene, shells, arches, nanobeams, carbon nanotubes, and porous materials
ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.
This is the second volume in a series of books on selected topics in Nanoscale Science and Technology based on lectures given at the well-known INFN schools of the same name. The aim of this collection is to provide a reference corpus of suitable, introductory material to relevant subfields, as they mature over time, by gathering the significantly expanded and edited versions of tutorial lectures, given over the years by internationally known experts. The present set of notes stems in particular from the participation and dedication of prestigious lecturers, such as Andrzej Huczko, Nicola Pugno, Alexander Malesevic, Pasquale Onorato and Stefano Bellucci. All lectures were subsequently carefully edited and reworked, taking into account the extensive follow-up discussions. A tutorial lecture by Huczko et al. shows how a variety of carbon and ceramic nanostructures (nanotubes, nanowires, nanofibres, nanorods, and nanoencapsulates) have in particular great potential for improving our understanding of the fundamental concepts of the roles of both dimensionality and size on physical material properties . Bellucci and Onorato provide an extensive and tutorial review of the (quantum) transport properties in carbon nanotubes, encompassing a description of the electronic structure from graphene to single-wall nanotubes, as well as a discussion of experimental evidence of superconductivity in carbon nanotubes and the corresponding theoretical interpretation. In the first contribution by Pugno, new ideas on how to design futuristic self-cleaning, super-adhesive and releasable hierarchical smart materials are presented. He also reviews the mechanical strength of such nanotubes and megacables, with an eye to the visionary project of a carbon nanotube-based ‘space elevator megacable’. In his second contribution, Pugno outlines in detail the role on the fracture strength of thermodynamically unavoidable atomistic defects with different size and shape, both numerically and theoretically, for nanotubes and nanotube bundles. Focusing on graphitic allotropes, the chapter by Bellucci and Malesevic aims to give a taste of the widespread implications carbon nanostructures have on research and applications, starting from an historical overview, followed by a discussion of the structure and physical properties of carbon nanotubes and graphene, in particular in the context of the several different synthesis techniques presently available.
The book "The Transmission Electron Microscope" contains a collection of research articles submitted by engineers and scientists to present an overview of different aspects of TEM from the basic mechanisms and diagnosis to the latest advancements in the field. The book presents descriptions of electron microscopy, models for improved sample sizing and handling, new methods of image projection, and experimental methodologies for nanomaterials studies. The selection of chapters focuses on transmission electron microscopy used in material characterization, with special emphasis on both the theoretical and experimental aspect of modern electron microscopy techniques. I believe that a broad range of readers, such as students, scientists and engineers will benefit from this book.
This book presents the proceedings of the 3rd edition of the International Conference on Theoretical, Applied and Experimental Mechanics. The papers focus on all aspects of theoretical, applied and experimental mechanics, including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture mechanics, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation.