Download Free Fractional Inequalities In Banach Algebras Book in PDF and EPUB Free Download. You can read online Fractional Inequalities In Banach Algebras and write the review.

This book presents generalized Caputo fractional Ostrowski and Grüss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Grüss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann–Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
In this book, we introduce the parametrized, deformed and general activation function of neural networks. The parametrized activation function kills much less neurons than the original one. The asymmetry of the brain is best expressed by deformed activation functions. Along with a great variety of activation functions, general activation functions are also engaged. Thus, in this book, all presented is original work by the author given at a very general level to cover a maximum number of different kinds of neural networks: giving ordinary, fractional, fuzzy and stochastic approximations. It presents here univariate, fractional and multivariate approximations. Iterated sequential multi-layer approximations are also studied. The functions under approximation and neural networks are Banach space valued.
This book collects chapters on fixed-point theory and fractional calculus and their applications in science and engineering. It discusses state-of-the-art developments in these two areas through original new contributions from scientists across the world. It contains several useful tools and techniques to develop their skills and expertise in fixed-point theory and fractional calculus. New research directions are also indicated in chapters. This book is meant for graduate students and researchers willing to expand their knowledge in these areas. The minimum prerequisite for readers is the graduate-level knowledge of analysis, topology and functional analysis.
This compact book focuses on self-adjoint operators’ well-known named inequalities and Korovkin approximation theory, both in a Hilbert space environment. It is the first book to study these aspects, and all chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references for further reading. The book’s results are expected to find applications in many areas of pure and applied mathematics. Given its concise format, it is especially suitable for use in related graduate classes and research projects. As such, the book offers a valuable resource for researchers and graduate students alike, as well as a key addition to all science and engineering libraries.
The first part of this book offers a comprehensive overview of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The second part of the book explores several applications of this theory.
The main objective of this book is to extend the scope of the q-calculus based on the definition of q-derivative [Jackson (1910)] to make it applicable to dense domains. As a matter of fact, Jackson's definition of q-derivative fails to work for impulse points while this situation does not arise for impulsive equations on q-time scales as the domains consist of isolated points covering the case of consecutive points. In precise terms, we study quantum calculus on finite intervals.In the first part, we discuss the concepts of qk-derivative and qk-integral, and establish their basic properties. As applications, we study initial and boundary value problems of impulsive qk-difference equations and inclusions equipped with different kinds of boundary conditions. We also transform some classical integral inequalities and develop some new integral inequalities for convex functions in the context of qk-calculus. In the second part, we develop fractional quantum calculus in relation to a new qk-shifting operator and establish some existence and qk uniqueness results for initial and boundary value problems of impulsive fractional qk-difference equations.
This proceedings volume documents the contributions presented at the CONIAPS XXVII International Conference on Recent Advances in Pure and Applied Algebra. The entries focus on modern trends and techniques in various branches of pure and applied Algebra and highlight their applications in coding, cryptography, graph, and fuzzy theory. The book comprised a total of eighteen chapters, among which the first fourteen chapters are devoted to Algebra and related topics, and the last four chapters are included applied mathematics parts. The chapters present the latest research work being done on the frontiers of the various branches of algebra as well as showcase the cross-fertilization of the ideas and connection among these branches.Covering a broad range of topics in pure and applied Algebra, this volume would appeal to a wide spectrum of the researcher in Mathematics. The main aim of this monograph is to contribute to the development of pure and applied Algebra and hence we purposely sought a cross-section of topics in Algebra and encouraged expository presentations and research papers that provide an innovative link between research areas of Algebra and the field of their applications. This volume will be useful not only to experts but also to beginners of research in algebras and related topics.
This book provides a thorough and self-contained study of interdependence and complexity in settings of functional analysis, harmonic analysis and stochastic analysis. It focuses on 'dimension' as a basic counter of degrees of freedom, leading to precise relations between combinatorial measurements and various indices originating from the classical inequalities of Khintchin, Littlewood and Grothendieck. The basic concepts of fractional Cartesian products and combinatorial dimension are introduced and linked to scales calibrated by harmonic-analytic and stochastic measurements. Topics include the (two-dimensional) Grothendieck inequality and its extensions to higher dimensions, stochastic models of Brownian motion, degrees of randomness and Frechet measures in stochastic analysis. This book is primarily aimed at graduate students specialising in harmonic analysis, functional analysis or probability theory. It contains many exercises and is suitable to be used as a textbook. It is also of interest to scientists from other disciplines, including computer scientists, physicists, statisticians, biologists and economists.