Download Free Foundations Of Equational Logic Programming Book in PDF and EPUB Free Download. You can read online Foundations Of Equational Logic Programming and write the review.

Equations play a vital role in many fields of mathematics, computer science, and artificial intelligence. Therefore, many proposals have been made to integrate equational, functional, and logic programming. This book presents the foundations of equational logic programming. After generalizing logic programming by augmenting programs with a conditional equational theory, the author defines a unifying framework for logic programming, equation solving, universal unification, and term rewriting. Within this framework many known results are developed. In particular, a presentation of the least model and the fixpoint semantics of equational logic programs is followed by a rigorous proof of the soundness and the strong completeness of various proof techniques: SLDE-resolution, where a universal unification procedure replaces the traditional unification algorithm; linear paramodulation and special forms of it such as rewriting and narrowing; complete sets of transformations for conditional equational theories; and lazy resolution combined with any complete set of inference rules for conditional equational theories.
This book describes an ongoing equational programming project that started in 1975. Within the project an equational programming language interpreter has been designed and implemented. The first part of the text (Chapters 1-10) provides a user's manual for the current implementation. The remaining sections cover the following topics: programming techniques and applications, theoretical foundations, implementation issues. Giving a brief account of the project's history (Chapter 11), the author devotes a large part of the text to techniques of equational programming at different levels of abstraction. Chapter 12 discusses low-level techniques including the distinction of constructors and defined functions, the formulation of conditional expressions and error and exception handling. High-level techniques are treated in Chapter 15 by discussing concurrency, nondeterminism, the relationship to dataflow programs and the transformation of recursive programs called dynamic programming. In Chapter 16 the author shows how to efficiently implement common data structures by equational programs. Modularity is discussed in Chapter 14. Several applications are also presented in the book. The author demonstrates the versatility of equational programming style by implementing syntactic manipulation algorithms (Chapter 13). Theoretical foundations are introduced in Chapter 17 (term rewriting systems, herein called term reduction systems). In Chapter 19 the author raises the question of a universal equational machine language and discusses the suitability of different variants of the combinator calculus for this purpose. Implementation issues are covered in Chapters 18 and 20 focused around algorithms for efficient pattern matching, sequencing and reduction. Aspects of design and coordination of the syntactic processors are presented as well.
Foundations of Deductive Databases and Logic Programming focuses on the foundational issues concerning deductive databases and logic programming. The selection first elaborates on negation in logic programming and towards a theory of declarative knowledge. Discussions focus on model theory of stratified programs, fixed point theory of nonmonotonic operators, stratified programs, semantics for negation in terms of special classes of models, relation between closed world assumption and the completed database, negation as a failure, and closed world assumption. The book then takes a look at negation as failure using tight derivations for general logic programs, declarative semantics of logic programs with negation, and declarative semantics of deductive databases and logic programs. The publication tackles converting AND-control to OR-control by program transformation, optimizing dialog, equivalences of logic programs, unification, and logic programming and parallel complexity. Topics include parallelism and structured and unstructured data, parallel algorithms and complexity, solving equations, most general unifiers, systems of equations and inequations, equivalences of logic programs, and optimizing recursive programs. The selection is a valuable source of data for researchers interested in pursuing further studies on the foundations of deductive databases and logic programming.
The International Logic Programming Symposium is one of two major international conferences sponsored by the Association of Logic Programming. Both conferences are held annually. The theme for the 1995 conference was "Declarative Systems", particularly the integration of the logic programming, functional programming, and object-oriented programming paradigms.
Topics covered: Theoretical Foundations. Higher-Order Logics. Non-Monotonic Reasoning. Programming Methodology. Programming Environments. Extensions to Logic Programming. Constraint Satisfaction. Meta-Programming. Language Design and Constructs. Implementation of Logic Programming Languages. Compilation Techniques. Architectures. Parallelism. Reasoning about Programs. Deductive Databases. Applications. 13-16 June 1995, Tokyo, Japan ICLP, which is sponsored by the Association for Logic Programming, is one of two major annual international conferences reporting recent research results in logic programming. Logic programming originates from the discovery that a subset of predicate logic could be given a procedural interpretation which was first embodied in the programming language, Prolog. The unique features of logic programming make it appealing for numerous applications in artificial intelligence, computer-aided design and verification, databases, and operations research, and for exploring parallel and concurrent computing. The last two decades have witnessed substantial developments in this field from its foundation to implementation, applications, and the exploration of new language designs. Topics covered: Theoretical Foundations. Higher-Order Logics. Non-Monotonic Reasoning. Programming Methodology. Programming Environments. Extensions to Logic Programming. Constraint Satisfaction. Meta-Programming. Language Design and Constructs. Implementation of Logic Programming Languages. Compilation Techniques. Architectures. Parallelism. Reasoning about Programs. Deductive Databases. Applications. Logic Programming series, Research Reports and Notes
This volume contains a selection of papers presented at the Seventh Logic Programming Conference that took place in Tokyo, April 11-14, 1988. It is the successor to the previous conference proceedings published as Lecture Notes in Computer Science Volumes 221, 264 and 315. The book covers various aspects of logic programming such as foundations, programming languages/systems, concurrent programming, knowledge bases, applications of computer-aided reasoning and natural language processing. The papers on foundations present theoretical results on "narrowing", a proof strategy for proving properties of Prolog programs based on inductionless induction and several issues in nonmonotonic reasoning. Of special interest to mathematicians is the paper on computer-aided reasoning, which describes a system for assisting human reasoning. Natural language application papers treat the lexical analysis of Japanese sentences, a system that generates a summary of a given sentence and a new knowledge representation formalism suited for representing dynamic behavior by extending the frame system.
This volume contains the papers which have been accepted for presentation atthe Third International Symposium on Programming Language Implementation andLogic Programming (PLILP '91) held in Passau, Germany, August 26-28, 1991. The aim of the symposium was to explore new declarative concepts, methods and techniques relevant for the implementation of all kinds of programming languages, whether algorithmic or declarative ones. The intention was to gather researchers from the fields of algorithmic programming languages as well as logic, functional and object-oriented programming. This volume contains the two invited talks given at the symposium by H. Ait-Kaci and D.B. MacQueen, 32 selected papers, and abstracts of several system demonstrations. The proceedings of PLILP '88 and PLILP '90 are available as Lecture Notes in Computer Science Volumes 348 and 456.
This volume contains selected papers presented at the Eighth Logic Programming Conference, held in Tokyo, 1989. Various topics in logic programming are covered. The first paper is an invited talk by Prof. Donald Michie, Chief Scientist of the Turing Institute, entitled "Human and Machine Learning of Descriptive Concepts", and introduces various research results on learning obtained by his group. There are eleven further papers, organized into sections on reasoning, logic programming language, concurrent programming, knowledge programming, natural language processing, and applications. A paper on knowledge programming introduces a flexible and powerful tool for incorporating and organizing knowledge using hypermedia. Another paper presents the constraint logic programming language cu-Prolog, designed for combinatorial problems; the way cu-Prolog solves the constraints is based on program transformation.
This volume presents the proceedings of the Fourth International Workshop on Analogical and Inductive Inference (AII '94) and the Fifth International Workshop on Algorithmic Learning Theory (ALT '94), held jointly at Reinhardsbrunn Castle, Germany in October 1994. (In future the AII and ALT workshops will be amalgamated and held under the single title of Algorithmic Learning Theory.) The book contains revised versions of 45 papers on all current aspects of computational learning theory; in particular, algorithmic learning, machine learning, analogical inference, inductive logic, case-based reasoning, and formal language learning are addressed.