Download Free Foundation Electrical Engineering Book in PDF and EPUB Free Download. You can read online Foundation Electrical Engineering and write the review.

The coverage begins by introducing electric charge as something that explains the experimental results of rubbing materials with a piece of cloth. Next, the idea of electric charge in motion is introduced, followed by the notion of electricity. After introducing resistance and its effect on a circuit, more sophisticated concepts and methods are introduced.
Foundations of Electrical Engineering: Fields—Networks—Waves describes the general principles of electrical engineering, with emphasis on fields, networks, and waves. The limitations of validity are defined and methods of calculation are outlined. Examples are used to illustrate the theory and microphysical explanations based on simple models are given. This book is divided into five sections and begins with an overview of the inductive approach to Maxwell's equations, along with the uniqueness of their solution. Energy conversion in the electromagnetic field as well as the basic concepts of vector algebra and vector analysis are also considered. Subsequent chapters focus on static and steady fields, including cylindrically symmetrical fields and magnetic fields; the laws of network analysis and network synthesis; transient phenomena; and transmission lines. The remaining sections deal with electromagnetic waves, with emphasis on boundary value problems, and further developments in electrical engineering. This monograph will be of interest to students of electrical engineering and mathematics.
A third edition of this popular text which provides a foundation in electronic and electrical engineering for HND and undergraduate students. The book offers exceptional breadth of coverage without sacrificing depth. It uses a wealth of practical examples to illustrate the theory, and makes no excessive demands on the reader's mathematical skills. Ideal as a teaching tool or for self-study.
Appropriate for introductory college courses in electrical engineering for major and nonmajors alike. Assumes that students have already completed one year of college-level calculus and physics. This text presents the basics of electrical engineering from the perspective of the primary principles behind the subject, rather than dwelling on superficial details. It is based on three objectives: to explain the fundamental ideas behind electrical engineering, to emphasize the unity of the subject, and to bring an understanding of the subject within the reach of all engineers.
Provides detailed, clear explanations of the fundamentals of electrical engineering, keeping readers focused on the basics. Maintains a strong emphasis on vocabulary throughout, encouraging further thought and communication based on chapter discussions. This book carefully explores the unifying themes of Electrical Engineering, maintaining a low level of detail and abstract theory. Topics include: Electric Power Systems, The Physical Basis of Electromechanics, Magnetic Structures and Electrical Transformers, The Synchronous Machine, Induction Motors, Direct-Current Motors, Power Electronic Systems.
The book gives a comprehensive coverage of ICs and can be divided into three parts. The first deals with processing, component formation, and device modelling. The second part covers digital and analogue circuits, including semicondutor memories, with performance summaries of commercialproducts. The final part explains the nature of application specific integrated circuits ( ASICs), and the ASIC design process. The final chapter covers VLSI scaling and the dominant role of interconnections in the scaling process. The text caters for many enginers and scientists who need to have agrasp of IC capabilities and ASIC design rooted in an appreciation of processing, device, behaviour, and circuit practice.
Unlike books currently on the market, this book attempts to satisfy two goals: combine circuits and electronics into a single, unified treatment, and establish a strong connection with the contemporary world of digital systems. It will introduce a new way of looking not only at the treatment of circuits, but also at the treatment of introductory coursework in engineering in general. Using the concept of ''abstraction,'' the book attempts to form a bridge between the world of physics and the world of large computer systems. In particular, it attempts to unify electrical engineering and computer science as the art of creating and exploiting successive abstractions to manage the complexity of building useful electrical systems. Computer systems are simply one type of electrical systems.+Balances circuits theory with practical digital electronics applications.+Illustrates concepts with real devices.+Supports the popular circuits and electronics course on the MIT OpenCourse Ware from which professionals worldwide study this new approach.+Written by two educators well known for their innovative teaching and research and their collaboration with industry.+Focuses on contemporary MOS technology.
Written for students taking BTEC HNC and HND courses in electrical and electronic engineering, this book introduces the electric and magnetic properties of materials. It ranges from the basic concepts of atomic structure to the electrical properties of metals, semiconductors and insulators.
This book focuses on the basic principles of digital electronics and logic design. It is designed as a textbook for undergraduate students of electronics, electrical engineering, computer science, physics, and information technology. The text covers the syllabi of several Indian and foreign universities. It depicts the comprehensive resources
This book covers structural and foundation systems used in high-voltage transmission lines, conductors, insulators, hardware and component assembly. In most developing countries, the term “transmission structures” usually means lattice steel towers. The term actually includes a vast range of structural systems and configurations of various materials such as wood, steel, concrete and composites. This book discusses those systems along with associated topics such as structure functions and configurations, load cases for design, analysis techniques, structure and foundation modeling, design deliverables and latest advances in the field. In the foundations section, theories related to direct embedment, drilled shaf ts, spread foundations and anchors are discussed in detail. Featuring worked out design problems for students, the book is aimed at students, practicing engineers, researchers and academics. It contains beneficial information for those involved in the design and maintenance of transmission line structures and foundations. For those in academia, it will be an adequate text-book / design guide for graduate-level courses on the topic. Engineers and managers at utilities and electrical corporations will find the book a useful reference at work.