Download Free Formation And Dynamics Of Self Organized Structures In Surfactants And Polymer Solutions Book in PDF and EPUB Free Download. You can read online Formation And Dynamics Of Self Organized Structures In Surfactants And Polymer Solutions and write the review.

The International Symposium on Colloid and Polymer Science was held at Nagoya Institute of Technology, Nagoya, Japan, in October 1996. The program covered both the fundamental aspects as well as technological applications of micelles, microemulsions, monolayers, and biocolloids. Special emphasis was placed on formation and dynamics of self-organized structures, including technical developments, applications, general theory, and results of investigations.
Dynamics of Surfactant Self-Assemblies explains the dynamics of micellar equilibria, tracking surfactant exchange, and micelle formation/breakdown processes. Highlighting the structural similarities of amphiphilic block copolymers to surfactants, this volume elucidates the dynamics of more complex self-assemblies that surfactants and amphiphilic bl
Solvents and Self-Organization of Polymers brings together scientists who are experts in macromolecular synthesis, the physical chemistry and the physics of polymer self-organization. The book also contains experimental results and methods, analytical theory and computer simulations. While the work concentrates on problems of basic science, such practical applications as pharmacology are not excluded. The broad cross-fertilization between these areas makes the book a fascinating and masterly survey of the area.
Highlighting recent developments as well as future challenges, this series of volumes covers such topics as emulsions, nano-emulsions, nano-dispersions and novel techniques for their investigation. It also considers the fundamental approach in areas such as controlled release, drug delivery and various applications of nanotechnology.
The present dissertation concerns an interdisciplinary subject focusing on both viscoelastic material characterizations and fluid dynamics experimental development for an immiscible amphiphilic system. In particular, a self-assembling material formed at the interface between an aqueous cationic surfactant (cetylpyridinium chloride, CPCl) solution and a fatty acid such as oleic acid (OA) is studied. The resulting interfacial layer forms owing to instantaneous self-organization of CPCl and OA molecules, which is similar to established surfactant systems including microemulsions and catanionic surfactants. First, a ternary phase diagram for CPCl, OA and water was established, to study the phase behavior of equilibrium bulk phases. The morphology and structure of bulk phases were characterized using the Small-Angle X-ray Scattering (SAXS) and oscillatory rheology. In the ternary diagram, we observed the formation of a gel phase at the equimolar mixing ratio of OA and CPCl. To characterize the interfacial layer made between CPCl solutions and OA, we reproduced the interfacial materials in small capillaries and employed SAXS. Both bulk gel and the interfacial material exhibit a domain spacing on the order of 20 nm as a lamellar phase. Interfacial rheology is applied to understand viscoelastic properties of the interfacial layer made between CPCl solution and a thin layer of OA. Both bulk rheology of the gel phase as well as the interfacial rheology of interfacial layer demonstrated a viscoelastic gel behavior (elastic modulus larger than loss modulus, and both moduli independent of frequency). Furthermore, a detailed comparison of bulk and interfacial materials characteristics are discussed.In the fluid dynamics part, two flow geometries are used to examine flow instabilities during interfacial material formation. In the first flow configuration, injection of an aqueous CPCl solution into an immiscible OA results in formation of various geometry including a columnar geometry due to development of an interfacial layer. The interfacial layer or the column wall exhibits peculiar elastic behavior such as wrinkling, buckling, or rupture. The physical properties of the interfacial material such as velocity of the interfacial layer are measured using visualization techniques (utilizing Phanton V5 high speed video camera). The second flow geometry is a quasi-2D Hele-Shaw cell, which is a classic method to study dynamics of an interface in a controlled and reproducible way. We observed that the interface dynamics and strength of self-assembled material are strongly dependent on surfactant concentration and flow conditions. The effect of oil molecular structures has been studied using various oils, including inert oils, other fatty acids, and triglycerides of oleic acid (triolein). We eventually discuss possibility of a connection between flow instabilities, phase behavior and interfacial material characteristics.In our system, both components are known to have antimicrobial properties which made them suitable for many pharmaceutical and medical applications. The results offer a good potential for generalization to a wide variety of complex fluid systems including surfactant mixtures, polymer solutions, emulsions, and colloidal domains, where the physical properties of the interfacial materials can be tuned for variety of applications such as in chemical, food, and oil industries.
Describes pattern formation processes and how they can be modeled for graduate-level courses.
An authoritative and comprehensive reference relevant to all scientists and engineers in the field. This encyclopedia not only helps chemistry, materials science and physics researchers to understand the principles, but also provides practicing engineers with the necessary information for implementing practical applications, such as Food and agrochemicals Polymers and ceramics Cosmetics and detergents Paints and coatings Pharmaceuticals and drug delivery In addition, the encyclopedia is an important reference for industrial chemists and chemical engineers faced with a multitude of industrial systems of a colloidal nature. As wide as the range of applications that colloid and interface science has is the range of scientific disciplines that contribute to research and development in this field. These encompass chemistry, physics, biology and mathematics as well as nanoscience and nanotechnology. The encyclopedia provides easy-to-digest information for meeting these interdisciplinary challenges. While providing numerous concise definitions of key terms, the encyclopedia also features more than forty in-depth essays on topics ranging from Agrochemical Formulations to Zeta Potential. All entries are cross-referenced and include selected references to original literature as well as synonyms.
In response to intensifying interest on surfactant research brought on by recent innovation, Structure-Performance Relationships in Surfactants, Second Edition examines novel developments in our understanding of the properties and performance of surfactants at air-liquid, liquid-liquid, and solid-liquid interfaces, highlighting seven new chapters and carefully updated material to reflect current trends. This edition presents new material on the adsorption of vesicle-forming surfactants at the air-water interface, fluorinated surfactants having two hydrophobic chains, surface-active properties of telomer-type surfactants having several hydrocarbon chains, and the association behavior of amphiphilic dendritic polymers, among many other topics.
"Chronicles recent advances in our knowledge of polymer-surfactant systems, combining authoritative reviews of new experimental methods, instrumentation, and applications with fundamental discussions of classical methodologies and surveys of specific properties."
This book gives the reader an introduction to the field of surfactants in solution as well as polymers in solution. Starting with an introduction to surfactants the book then discusses their environmental and health aspects. Chapter 3 looks at fundamental forces in surface and colloid chemistry. Chapter 4 covers self-assembly and 5 phase diagrams. Chapter 6 reviews advanced self-assembly while chapter 7 looks at complex behaviour. Chapters 8 to 10 cover polymer adsorption at solid surfaces, polymers in solution and surface active polymers, respectively. Chapters 11 and 12 discuss adsorption and surface and interfacial tension, while Chapters 13- 16 deal with mixed surfactant systems. Chapter 17, 18 and 19 address microemulsions, colloidal stability and the rheology of polymer and surfactant solutions. Wetting and wetting agents, hydrophobization and hydrophobizing agents, solid dispersions, surfactant assemblies, foaming, emulsions and emulsifiers and microemulsions for soil and oil removal complete the coverage in chapters 20-25.