Download Free Focus On Bacterial Biofilms Book in PDF and EPUB Free Download. You can read online Focus On Bacterial Biofilms and write the review.

Bacterial biofilms are colonies of bacterial cells embedded in their self-produced matrix composed of polysaccharides, DNA, and proteins. They protect bacterial cells against antibiotics, antibacterial agents, soaps and detergents, and shear stress. Some of the most common biofilm-associated infections in humans include urinary tract infections, infection of wounds and surgical sites, diabetic foot ulcers, dental caries (tooth decay) and gingivitis (gum inflammation), ventilator-associated infections, sinusitis, microbial keratitis, secondary infection related to Covid-19 and other viral infections, and so on. Bacterial resistance to common antibiotics (e.g., penicillin, gentamycin, erythromycin, ciprofloxacin, etc.) is driving us to a catastrophic failure of our health systems. Strategies to develop novel antibacterial agents and technology must be prioritized to combat and eradicate biofilms and their associated challenges. This book provides a comprehensive overview of biofilms with chapters on bacterial virulence factors, quorum sensing in bacteria, antimicrobial resistance in bacteria, strategies to develop new antibacterial agents, and much more.
Throughout the biological world, bacteria thrive predominantly in surface-attached, matrix-enclosed, multicellular communities or biofilms, as opposed to isolated planktonic cells. This choice of lifestyle is not trivial, as it involves major shifts in the use of genetic information and cellular energy, and has profound consequences for bacterial physiology and survival. Growth within a biofilm can thwart immune function and antibiotic therapy and thereby complicate the treatment of infectious diseases, especially chronic and foreign device-associated infections. Modern studies of many important biofilms have advanced well beyond the descriptive stage, and have begun to provide molecular details of the structural, biochemical, and genetic processes that drive biofilm formation and its dispersion. There is much diversity in the details of biofilm development among various species, but there are also commonalities. In most species, environmental and nutritional conditions greatly influence biofilm development. Similar kinds of adhesive molecules often promote biofilm formation in diverse species. Signaling and regulatory processes that drive biofilm development are often conserved, especially among related bacteria. Knowledge of such processes holds great promise for efforts to control biofilm growth and combat biofilm-associated infections. This volume focuses on the biology of biofilms that affect human disease, although it is by no means comprehensive. It opens with chapters that provide the reader with current perspectives on biofilm development, physiology, environmental, and regulatory effects, the role of quorum sensing, and resistance/phenotypic persistence to antimicrobial agents during biofilm growth.
The ability to form biofilms is a universal attribute of bacteria. Bacteria are able to grow on almost every surface, forming these architecturally complex communities. In biofilms, the cells grow in multicellular aggregates, encased in an extracellular matrix produced by the bacteria themselves. They impact humans in many ways, and can form in natural, medical and industrial settings. For example, the formation of biofilms on medical devices such as catheters or implants often results in difficult-to-treat chronic infections. This book focuses on emerging concepts in bacterial biofilm research, such as the different mechanisms of biofilm formation in Gram negative and Gram positive bacteria, and the burden of biofilm associated infections. It also highlights the various anti-biofilm strategies that can be translated to curb biofilm-associated infections and the escalation of antimicrobial resistance determinants.
Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.
An examination of the research and translational application to prevent and treat biofilm-associated diseases In the decade since the first edition of Microbial Biofilms was published, the interest in this field has expanded, spurring breakthrough research that has advanced the treatment of biofilm-associated diseases. This second edition takes the reader on an exciting, extensive review of bacterial and fungal biofilms, ranging from basic molecular interactions to innovative therapies, with particular emphasis on the division of labor in biofilms, new approaches to combat the threat of microbial biofilms, and how biofilms evade the host defense. Chapters written by established investigators cover recent findings, and contributions from investigators new to the field provide unique and fresh insights. Specifically, Microbial Biofilms provides state-of-the-art research in the field of bacterial and fungal biofilms detailed descriptions of the in vitro and in vivo models available to evaluate microbial biofilms future areas of research and their translational and clinical applications Microbial Biofilms is a useful reference for researchers and clinicians. It will also provide insight in the dynamic field of microbial biofilms for graduate and postgraduate students.
This book highlights treatment strategies for bacterial biofilms in connection with a variety of human diseases. In particular, it reviews bacterial biofilm formation and its mechanism. Topics covered include biofilms in human health, the role of biofilms in mediating human diseases, and methods for testing bacterial biofilms. Further sections concentrate on biofilm-mediated diseases in different parts of the human gastrointestinal tract, while therapeutic strategies for biofilm control and natural agents that disrupt bacterial biofilms are also covered. Readers will also find the latest advances in probiotics and biofilms, as well as the use of probiotics to counteract biofilm-associated infections. Biofilms and antimicrobial resistance are discussed. Subsequent chapters address the management of inflammatory bowel disease via probiotics biofilms, as well as the role of probiotics bacteria in the treatment of human diseases associated with bacterial biofilms. The book is chiefly intended for clinicians/scientists in the fields of medical microbiology, applied microbiology, biochemistry, and biotechnology.
This book provides excellent techniques for detecting and evaluating biofilms: sticky films on materials that are formed by bacterial activity and produce a range of industrial and medical problems such as corrosion, sanitary problems, and infections. Accordingly, it is essential to control biofilms and to establish appropriate countermeasures, from both industrial and medical viewpoints. This book offers valuable, detailed information on these countermeasures. It also discusses the fundamentals of biofilms, relates various substrates to biofilms, and presents a variety of biofilm reactors. However, the most important feature of this book (unlike others on the market) is its clear focus on addressing the practical aspects from an engineering viewpoint. Therefore, it offers an excellent practical guide for engineers and researchers in various fields, and can also be used as a great academic textbook.
The ability to form biofilms is a universal attribute of bacteria. Bacteria are able to grow on almost every surface, forming these architecturally complex communities. In biofilms, the cells grow in multicellular aggregates, encased in an extracellular matrix produced by the bacteria themselves. They impact humans in many ways, and can form in natural, medical and industrial settings. For example, the formation of biofilms on medical devices such as catheters or implants often results in difficult-to-treat chronic infections. This book focuses on emerging concepts in bacterial biofilm research, such as the different mechanisms of biofilm formation in Gram negative and Gram positive bacteria, and the burden of biofilm associated infections. It also highlights the various anti-biofilm strategies that can be translated to curb biofilm-associated infections and the escalation of antimicrobial resistance determinants.
This book will cover both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as diagnostics and treatment regimes. A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that that less than 0.1% of the total microbial biomass lives in the planktonic mode of growth. The term was coined in 1978 by Costerton et al. who defined the term biofilm for the first time.In 1993 the American Society for Microbiology (ASM) recognised that the biofilmmode of growth was relevant to microbiology. Lately many articles have been published on the clinical implications of bacterial biofilms. Both original articles and reviews concerning the biofilm problem are available.
This book examines biofilms in nature. Organized into four parts, this book addresses biofilms in wastewater treatment, inhibition of biofilm formation, biofilms and infection, and ecology of biofilms. It is designed for clinicians, researchers, and industry professionals in the fields of microbiology, biotechnology, ecology, and medicine as well as graduate and postgraduate students.