Download Free Fm Formal Methods Book in PDF and EPUB Free Download. You can read online Fm Formal Methods and write the review.

This book constitutes the refereed proceedings of the 4th International Workshop and Tutorial, FMTea 2021, Held as Part of the 4th World Congress on Formal Methods, FM 2021, as a virtual event in November 2021. The 8 full papers presented together with 2 short papers were carefully reviewed and selected from 12 submissions. The papers are organized in topical sections named: experiences and proposals related with online FM learning and teaching, integrating/embedding FM teaching/thinking within other computer science courses, teaching FM for industry, and innovative learning and teaching methods for FM.
This book constitutes the refereed proceedings of the workshops which complemented the 23rd Symposium on Formal Methods, FM 2019, held in Porto, Portugal, in October 2019. This volume presents the papers that have been accepted for the following workshops: Third Workshop on Practical Formal Verification for Software Dependability, AFFORD 2019; 8th International Symposium From Data to Models and Back, DataMod 2019; First Formal Methods for Autonomous Systems Workshop, FMAS 2019; First Workshop on Formal Methods for Blockchains, FMBC 2019; 8th International Workshop on Formal Methods for Interactive Systems, FMIS 2019; First History of Formal Methods Workshop, HFM 2019; 8th International Workshop on Numerical and Symbolic Abstract Domains, NSAD 2019; 9th International Workshop on Open Community Approaches to Education, Research and Technology, OpenCERT 2019; 17th Overture Workshop, Overture 2019; 19th Refinement Workshop, Refine 2019; First International Workshop on Reversibility in Programming, Languages, and Automata, RPLA 2019; 10th International Workshop on Static Analysis and Systems Biology, SASB 2019; and the 10th Workshop on Tools for Automatic Program Analysis, TAPAS 2019.
This Festschrift, dedicated to Klaus Havelund on the occasion of his 65th birthday, celebrated in 2021 due to the COVID-19 pandemic, contains papers written by many of his closest friends and collaborators. After work as a software programmer in various Danish companies, Klaus has held research positions at various institutes, including the Danish Datamatics Center, the Ecole Polytechnique, LIP 6 lab in Paris, Aalborg University, and NASA Ames. Since 2006 he has been working in NASA’s Jet Propulsion Laboratory (JPL), the federally funded center managed by Caltech whose primary function is to construct and operate planetary robotic spacecraft. His professional awards include the Turning Goals Into Reality engineering innovation award, the Outstanding Technology Development award, and the JPL Mariner, Ranger, Voyager, and Magellan awards. Klaus has provided constant and generous service to the formal methods community by organizing, participating in, and chairing numerous committees. His academic awards include the 2020 SIGSOFT Impact Paper Award, the RV 2018 Test of Time award, and the ASE 2014 and ASE 2016 Most Influential Paper awards. His research activities have generated more than 100 publications with more than 100 collaborators, cited over 12,000 times. The book title reflects Klaus’s main research and engineering focus throughout his career: formal methods, often applied at NASA. The contributions, which went through a peer-review process, cover a wide spectrum of the topics related to his scientific interests, including programming language design, static analysis, runtime verification, dynamic assurance, and automata learning.
Part I of this book is a practical introduction to working with the Isabelle proof assistant. It teaches you how to write functional programs and inductive definitions and how to prove properties about them in Isabelle’s structured proof language. Part II is an introduction to the semantics of imperative languages with an emphasis on applications like compilers and program analysers. The distinguishing feature is that all the mathematics has been formalised in Isabelle and much of it is executable. Part I focusses on the details of proofs in Isabelle; Part II can be read even without familiarity with Isabelle’s proof language, all proofs are described in detail but informally. The book teaches the reader the art of precise logical reasoning and the practical use of a proof assistant as a surgical tool for formal proofs about computer science artefacts. In this sense it represents a formal approach to computer science, not just semantics. The Isabelle formalisation, including the proofs and accompanying slides, are freely available online, and the book is suitable for graduate students, advanced undergraduate students, and researchers in theoretical computer science and logic.
Hybrid systems are models for complex physical systems and have become a widely used concept for understanding their behavior. Many applications are safety-critical, including car, railway, and air traffic control, robotics, physical–chemical process control, and biomedical devices. Hybrid systems analysis studies how we can build computerized controllers for physical systems which are guaranteed to meet their design goals. The author gives a unique, logic-based perspective on hybrid systems analysis. It is the first book that leverages the power of logic for hybrid systems. The author develops a coherent logical approach for systematic hybrid systems analysis, covering its theory, practice, and applications. It is further shown how the developed verification techniques can be used to study air traffic and railway control systems. This book is intended for researchers, postgraduates, and professionals who are interested in hybrid systems analysis, cyberphysical or embedded systems design, logic and theorem proving, or transportation and automation.
Learn how to design complex, correct programs and fix problems before writing a single line of code. This book is a practical, comprehensive resource on TLA+ programming with rich, complex examples. Practical TLA+ shows you how to use TLA+ to specify a complex system and test the design itself for bugs. You’ll learn how even a short TLA+ spec can find critical bugs. Start by getting your feet wet with an example of TLA+ used in a bank transfer system, to see how it helps you design, test, and build a better application. Then, get some fundamentals of TLA+ operators, logic, functions, PlusCal, models, and concurrency. Along the way you will discover how to organize your blueprints and how to specify distributed systems and eventual consistency. Finally, you’ll put what you learn into practice with some working case study applications, applying TLA+ to a wide variety of practical problems: from algorithm performance and data structures to business code and MapReduce. After reading and using this book, you'll have what you need to get started with TLA+ and how to use it in your mission-critical applications. What You'll LearnRead and write TLA+ specsCheck specs for broken invariants, race conditions, and liveness bugsDesign concurrency and distributed systemsLearn how TLA+ can help you with your day-to-day production work Who This Book Is For Those with programming experience who are new to design and to TLA+. /div
In this book the author introduces a novel approach to securing exam systems. He provides an in-depth understanding, useful for studying the security of exams and similar systems, such as public tenders, personnel selections, project reviews, and conference management systems. After a short chapter that explains the context and objectives of the book, in Chap. 2 the author introduces terminology for exams and the foundations required to formulate their security requirements. He describes the tasks that occur during an exam, taking account of the levels of detail and abstraction of an exam specification and the threats that arise out of the different exam roles. He also presents a taxonomy that classifies exams by types and categories. Chapter 3 contains formal definitions of the authentication, privacy, and verifiability requirements for exams, a framework based on the applied pi-calculus for the specification of authentication and privacy, and a more abstract approach based on set-theory that enables the specification of verifiability. Chapter 4 describes the Huszti-Pethő protocol in detail and proposes a security enhancement. In Chap. 5 the author details Remark!, a protocol for Internet-based exams, discussing its cryptographic building blocks and some security considerations. Chapter 6 focuses on WATA, a family of computer-assisted exams that employ computer assistance while keeping face-to-face testing. The chapter also introduces formal definitions of accountability requirements and details the analysis of a WATA protocol against such definitions. In Chaps. 4, 5, and 6 the author uses the cryptographic protocol verifier ProVerif for the formal analyses. Finally, the author outlines future work in Chap. 7. The book is valuable for researchers and graduate students in the areas of information security, in particular for people engaged with exams or protocols.
The name "temporal logic" may sound complex and daunting; but while they describe potentially complex scenarios, temporal logics are often based on a few simple, and fundamental, concepts - highlighted in this book. An Introduction to Practical Formal Methods Using Temporal Logic provides an introduction to formal methods based on temporal logic, for developing and testing complex computational systems. These methods are supported by many well-developed tools, techniques and results that can be applied to a wide range of systems. Fisher begins with a full introduction to the subject, covering the basics of temporal logic and using a variety of examples, exercises and pointers to more advanced work to help clarify and illustrate the topics discussed. He goes on to describe how this logic can be used to specify a variety of computational systems, looking at issues of linking specifications, concurrency, communication and composition ability. He then analyses temporal specification techniques such as deductive verification, algorithmic verification, and direct execution to develop and verify computational systems. The final chapter on case studies analyses the potential problems that can occur in a range of engineering applications in the areas of robotics, railway signalling, hardware design, ubiquitous computing, intelligent agents, and information security, and explains how temporal logic can improve their accuracy and reliability. Models temporal notions and uses them to analyze computational systems Provides a broad approach to temporal logic across many formal methods - including specification, verification and implementation Introduces and explains freely available tools based on temporal logics and shows how these can be applied Presents exercises and pointers to further study in each chapter, as well as an accompanying website providing links to additional systems based upon temporal logic as well as additional material related to the book.
This book constitutes the refereed proceedings of the International Symposium of Formal Methods Europe, FME 2003, held in Pisa, Italy in September 2003. The 44 revised full papers presented together with 5 invited papers were carefully reviewed and selected from 144 submissions. The papers are organized in topical sections on industrial issues, control systems and applications, communication system verfication, co-specification and compilers, composition, Java, object-orientation and modularity, model checking, parallel processes, program checking and testing, B method, and security.
Through fundamental contributions from leading researchers, this volume describes the use of formal modeling methods in the areas of requirements, design and validation. The self-contained chapters provide readers with rich background information and a diverse breadth of specialist material.